{"title":"Universal Zigzag Edge Reconstruction of an α-Phase Puckered Monolayer and Its Resulting Robust Spatial Charge Separation","authors":"Yanxue Zhang, Yanyan Zhao, Yizhen Bai, Junfeng Gao*, Jijun Zhao, Yong-Wei Zhang*","doi":"10.1021/acs.nanolett.1c02461","DOIUrl":null,"url":null,"abstract":"<p >Edges are important, because they dictate the stability and properties of nanoribbons. Here, we reveal a universal reconstruction of the ZZ edge into a (2 × 1) tubed [ZZ(Tube)] edge, enabling an ultimate narrow nanotube to terminate nanoribbons for α-puckered group-V elemental and compound monolayers (GeS/Se and SnS/Se). The reconstructed edge formations are confirmed by CALYPSO. The ZZ(Tube) edge forms easily, is highly stable, and is semiconducting. Remarkably, the ZZ(Tube) edge always exhibits a type-II band structure and robust spatial charge separation. For a compound monolayer monochalcogenide, mild (2 × 1) ZZ(S-R) occurs at the chalcogenide-terminated edge. TDDFT simulations indicate that charge separation occurs only at 672 fs, while the lifetime is over 5 ns, thus facilitating robust spatial charge accumulation. These remarkable features of ZZ(Tube) edge-terminated α-puckered nanoribbons are ideal for optoelectronic and photocatalytic applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"21 19","pages":"8095–8102"},"PeriodicalIF":9.6000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.1c02461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Edges are important, because they dictate the stability and properties of nanoribbons. Here, we reveal a universal reconstruction of the ZZ edge into a (2 × 1) tubed [ZZ(Tube)] edge, enabling an ultimate narrow nanotube to terminate nanoribbons for α-puckered group-V elemental and compound monolayers (GeS/Se and SnS/Se). The reconstructed edge formations are confirmed by CALYPSO. The ZZ(Tube) edge forms easily, is highly stable, and is semiconducting. Remarkably, the ZZ(Tube) edge always exhibits a type-II band structure and robust spatial charge separation. For a compound monolayer monochalcogenide, mild (2 × 1) ZZ(S-R) occurs at the chalcogenide-terminated edge. TDDFT simulations indicate that charge separation occurs only at 672 fs, while the lifetime is over 5 ns, thus facilitating robust spatial charge accumulation. These remarkable features of ZZ(Tube) edge-terminated α-puckered nanoribbons are ideal for optoelectronic and photocatalytic applications.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.