{"title":"A dynamic ferrofluid platform for micromanipulation","authors":"W. Song, Z. Ding, C. Son, B. Ziaie","doi":"10.1109/MEMSYS.2007.4433115","DOIUrl":null,"url":null,"abstract":"In this paper, we report a new and simple method for manipulating free droplets using ferrofluid dynamics. For the movement of free droplets using ferrofluid, a periodic pattern of ferrofluid is generated by using a strip magnet and dynamically modified using a magnetic stirrer. The dependence of droplet movement on the size of droplets and the rotation speed of the magnetic stirrer is studied. In order to improve the mixing efficiency, a discontinuity in the ferrofluid pattern at the mixing spots is created by adding a smaller strip magnet to the above setup. We demonstrate a reduction in the mixing time at the target spot as compared to the setup without the addition of the smaller strip magnet. A novel aspect of the reported work is the use of ferrofluid dynamics to control the movement and mixing of free microdroplets without sample evaporation and solid surface contact contamination.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"41 1","pages":"505-508"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we report a new and simple method for manipulating free droplets using ferrofluid dynamics. For the movement of free droplets using ferrofluid, a periodic pattern of ferrofluid is generated by using a strip magnet and dynamically modified using a magnetic stirrer. The dependence of droplet movement on the size of droplets and the rotation speed of the magnetic stirrer is studied. In order to improve the mixing efficiency, a discontinuity in the ferrofluid pattern at the mixing spots is created by adding a smaller strip magnet to the above setup. We demonstrate a reduction in the mixing time at the target spot as compared to the setup without the addition of the smaller strip magnet. A novel aspect of the reported work is the use of ferrofluid dynamics to control the movement and mixing of free microdroplets without sample evaporation and solid surface contact contamination.