Optimization with constraints considering polymorphic uncertainties

Q1 Mathematics
Markus Mäck, Ismail Caylak, Philipp Edler, Steffen Freitag, Michael Hanss, Rolf Mahnken, Günther Meschke, Eduard Penner
{"title":"Optimization with constraints considering polymorphic uncertainties","authors":"Markus Mäck,&nbsp;Ismail Caylak,&nbsp;Philipp Edler,&nbsp;Steffen Freitag,&nbsp;Michael Hanss,&nbsp;Rolf Mahnken,&nbsp;Günther Meschke,&nbsp;Eduard Penner","doi":"10.1002/gamm.201900005","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, a numerical design strategy for the optimization under polymorphic uncertainty is introduced and applied to a self-weight minimization of a framework structure. The polymorphic uncertainty, which affects the constraint function of the optimization problem, is thereby modeled in terms of stochastic variables, fuzzy sets, and intervals to account for variability, imprecision and insufficient information. The stochastic quantities are computed using polynomial chaos expansion resulting in a purely fuzzy-valued formulation of the constraint functions which can be computed using <i>α</i>-cut optimization. Afterward, the constraint function can be interpreted in a possibilistic manner, resulting in a flexible formulation to include expert knowledge and to achieve a robust design.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.201900005","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.201900005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

In this contribution, a numerical design strategy for the optimization under polymorphic uncertainty is introduced and applied to a self-weight minimization of a framework structure. The polymorphic uncertainty, which affects the constraint function of the optimization problem, is thereby modeled in terms of stochastic variables, fuzzy sets, and intervals to account for variability, imprecision and insufficient information. The stochastic quantities are computed using polynomial chaos expansion resulting in a purely fuzzy-valued formulation of the constraint functions which can be computed using α-cut optimization. Afterward, the constraint function can be interpreted in a possibilistic manner, resulting in a flexible formulation to include expert knowledge and to achieve a robust design.

考虑多态不确定性约束的优化
本文介绍了一种多态不确定性优化的数值设计策略,并将其应用于框架结构的自重最小化。多态不确定性影响优化问题的约束函数,因此用随机变量、模糊集和区间来建模,以解释可变性、不精确和信息不足。随机量的计算采用多项式混沌展开,得到约束函数的纯模糊值表达式,可以用α-切优化计算。然后,约束函数可以以可能性的方式解释,从而产生灵活的公式,以包含专家知识并实现稳健设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信