Investigating general and specific psychopathology factors with nuance-level personality traits.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuzhan Hang, Lydia Gabriela Speyer, Liina Haring, Aja Louise Murray, René Mõttus
{"title":"Investigating general and specific psychopathology factors with nuance-level personality traits.","authors":"Yuzhan Hang,&nbsp;Lydia Gabriela Speyer,&nbsp;Liina Haring,&nbsp;Aja Louise Murray,&nbsp;René Mõttus","doi":"10.1002/pmh.1561","DOIUrl":null,"url":null,"abstract":"<p><p>Mental health disorders share substantial variance, prompting researchers to develop structural models that can capture both generalised psychopathology risk and disorder/symptom-specific variation. This study investigated the associations of the general and specific psychopathology factors with multiple personality trait hierarchy levels: broad domains, their facets and nuances (N = 1839 Estonian adults). A bi-factor model with a general 'p' factor and specific factors for internalising problems, thought disorders and substance use best represented psychopathology structure. Although traits' predictive accuracy varied across psychopathology factors, nuances (the lowest level personality units) provided higher predictive accuracy and higher discriminant validity than domains. For example, traits related to high vulnerability, depression and immoderation and low friendliness and achievement striving were most strongly associated with the p factor. Nuances may prove useful for predicting and understanding general and specific psychopathology forms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pmh.1561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Mental health disorders share substantial variance, prompting researchers to develop structural models that can capture both generalised psychopathology risk and disorder/symptom-specific variation. This study investigated the associations of the general and specific psychopathology factors with multiple personality trait hierarchy levels: broad domains, their facets and nuances (N = 1839 Estonian adults). A bi-factor model with a general 'p' factor and specific factors for internalising problems, thought disorders and substance use best represented psychopathology structure. Although traits' predictive accuracy varied across psychopathology factors, nuances (the lowest level personality units) provided higher predictive accuracy and higher discriminant validity than domains. For example, traits related to high vulnerability, depression and immoderation and low friendliness and achievement striving were most strongly associated with the p factor. Nuances may prove useful for predicting and understanding general and specific psychopathology forms.

研究一般和特殊的精神病理因素与细微差别水平的人格特质。
精神健康障碍有很大的差异,促使研究人员开发结构模型,既可以捕捉一般的精神病理风险,也可以捕捉疾病/症状特异性的变化。本研究调查了一般和特殊的精神病理因素与多重人格特质层次水平的关系:广泛的领域,他们的方面和细微差别(N = 1839爱沙尼亚成年人)。一个双因素模型,具有一般的“p”因素和内化问题、思维障碍和物质使用的特定因素,最能代表精神病理结构。虽然特质的预测准确度在不同的精神病理因素中存在差异,但细微差别(最低层次的人格单位)比领域提供了更高的预测准确度和判别效度。例如,与高脆弱性、抑郁和不节制以及低友善和追求成就相关的特征与p因素的关系最为密切。细微差别可能有助于预测和理解一般和特定的精神病理形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信