Decolorization mechanisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
R. Cebecioglu, D. Akagunduz, H. Bermek, V. E. Atalay, T. Catal
{"title":"Decolorization mechanisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production","authors":"R. Cebecioglu, D. Akagunduz, H. Bermek, V. E. Atalay, T. Catal","doi":"10.3233/mgc-210180","DOIUrl":null,"url":null,"abstract":"Environmental pollution is increasing in parallel with the increase in the world population. Azo dyes are one of the most important causes of environmental pollution. Microbial electrochemical cells are biotechnological systems that generate energy from renewable sources such as electricity. This study investigated simultaneous electricity generation with the decolorization of two different azo dyes in microbial fuel cells. And also, changes in pH values, chemical oxygen demand analysis, hourly color removal rate, dye spectral scanning were investigated. Reactive Yellow 145 dye with a concentration of 10 mg/L, 20 mg/L, and 40 mg/L, and Ponceau S dye with 20 mg/L and 40 mg/L concentration were tested in microbial fuel cells, respectively. Results indicate that the maximum voltage obtained was 0.11 V at the same time as the 100% decolorization rate in Reactive Yellow 145 and was achieved at a concentration of 10 mg/L also, the maximum voltage obtained was 0.24 V at the same time as the 100% decolorization rate in Ponceau S. It was achieved at a concentration of 20 mg/L. In conclusion, microbial fuel cells appear to be promising tools in treating textile azo dye wastewaters, and computational methods can be applied to estimate the degradation mechanisms of complex organic molecules found in wastewaters.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"75 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210180","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Environmental pollution is increasing in parallel with the increase in the world population. Azo dyes are one of the most important causes of environmental pollution. Microbial electrochemical cells are biotechnological systems that generate energy from renewable sources such as electricity. This study investigated simultaneous electricity generation with the decolorization of two different azo dyes in microbial fuel cells. And also, changes in pH values, chemical oxygen demand analysis, hourly color removal rate, dye spectral scanning were investigated. Reactive Yellow 145 dye with a concentration of 10 mg/L, 20 mg/L, and 40 mg/L, and Ponceau S dye with 20 mg/L and 40 mg/L concentration were tested in microbial fuel cells, respectively. Results indicate that the maximum voltage obtained was 0.11 V at the same time as the 100% decolorization rate in Reactive Yellow 145 and was achieved at a concentration of 10 mg/L also, the maximum voltage obtained was 0.24 V at the same time as the 100% decolorization rate in Ponceau S. It was achieved at a concentration of 20 mg/L. In conclusion, microbial fuel cells appear to be promising tools in treating textile azo dye wastewaters, and computational methods can be applied to estimate the degradation mechanisms of complex organic molecules found in wastewaters.
微生物燃料电池在同步发电过程中活性黄145和ponceau S的脱色机理
环境污染随着世界人口的增长而日益严重。偶氮染料是造成环境污染的重要原因之一。微生物电化学电池是一种利用电力等可再生资源产生能量的生物技术系统。本研究研究了微生物燃料电池中两种不同偶氮染料的脱色同时发电。并对pH值的变化、化学需氧量分析、小时脱色率、染料光谱扫描等进行了研究。在微生物燃料电池中分别对浓度为10 mg/L、20 mg/L、40 mg/L的活性黄145染料和浓度为20 mg/L、40 mg/L的Ponceau S染料进行了测试。结果表明,活性黄145在达到100%脱色率时获得的最大电压为0.11 V,在浓度为10 mg/L时获得的最大电压为0.24 V,在浓度为20 mg/L时获得的最大电压为100%脱色率。总之,微生物燃料电池似乎是处理纺织偶氮染料废水的有前途的工具,并且计算方法可以用于估计废水中发现的复杂有机分子的降解机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Main Group Chemistry
Main Group Chemistry 化学-化学综合
CiteScore
2.00
自引率
26.70%
发文量
65
审稿时长
>12 weeks
期刊介绍: Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信