{"title":"A Delay-variation-aware High-level Synthesis Algorithm for RDR Architectures","authors":"Yuta Hagio, M. Yanagisawa, N. Togawa","doi":"10.2197/ipsjtsldm.7.81","DOIUrl":null,"url":null,"abstract":"As device feature size drops, interconnection delays often exceed gate delays. We have to incorporate interconnection delays even in high-level synthesis. Using RDR architectures is one of the effective solutions to this problem. At the same time, process and delay variation also becomes a serious problem which may result in several timing errors. How to deal with this problem is another key issue in high-level synthesis. In this paper, we propose a delay-variation-aware high-level synthesis algorithm for RDR architectures. We first obtain a non-delayed scheduling/binding result and, based on it, we also obtain a delayed scheduling/binding result. By adding several extra functional units to vacant RDR islands, we can have a delayed scheduling/binding result so that its latency is not much increased compared with the non-delayed one. After that, we similarize the two scheduling/binding results by repeatedly modifying their results. We can finally realize non-delayed and delayed scheduling/binding results simultaneously on RDR architecture with almost no area/performance overheads and we can select either one of them depending on post-silicon delay variation. Experimental results show that our algorithm successfully reduces delayed scheduling/binding latency by up to 42.9% compared with the conventional approach.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.7.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5
Abstract
As device feature size drops, interconnection delays often exceed gate delays. We have to incorporate interconnection delays even in high-level synthesis. Using RDR architectures is one of the effective solutions to this problem. At the same time, process and delay variation also becomes a serious problem which may result in several timing errors. How to deal with this problem is another key issue in high-level synthesis. In this paper, we propose a delay-variation-aware high-level synthesis algorithm for RDR architectures. We first obtain a non-delayed scheduling/binding result and, based on it, we also obtain a delayed scheduling/binding result. By adding several extra functional units to vacant RDR islands, we can have a delayed scheduling/binding result so that its latency is not much increased compared with the non-delayed one. After that, we similarize the two scheduling/binding results by repeatedly modifying their results. We can finally realize non-delayed and delayed scheduling/binding results simultaneously on RDR architecture with almost no area/performance overheads and we can select either one of them depending on post-silicon delay variation. Experimental results show that our algorithm successfully reduces delayed scheduling/binding latency by up to 42.9% compared with the conventional approach.