{"title":"Quantum transport simulation of III–V MOSFETs based on Wigner Monte Carlo approach","authors":"Y. Maegawa, S. Koba, H. Tsuchiya, M. Ogawa","doi":"10.1109/SNW.2012.6243361","DOIUrl":null,"url":null,"abstract":"III-V compound semiconductors are expected as a post-Si channel material, because they have higher electron mobility and lower effective mass than Si. Actually, the high performance of InGaAs MOSFETs with high-k gate dielectrics has been demonstrated [1,2]. On the other hand, due to a quasi-ballistic behavior of electron transport, III-V channel MOSFETs may be more vulnerable by quantum mechanical effects such as quantum reflection and tunneling, as compared to conventional Si-MOSFETs. In this paper, we investigate quantum transport effects in III-V channel MOSFETs by using a Wigner Monte Carlo (WMC) simulation [3,4], which can fully incorporate the quantum transport effects. As a result, we found that the quantum reflection reduces on-current, while the source-drain (SD) direct tunneling increases subthreshold current even as the channel length is larger than 10 nm.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"32 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
III-V compound semiconductors are expected as a post-Si channel material, because they have higher electron mobility and lower effective mass than Si. Actually, the high performance of InGaAs MOSFETs with high-k gate dielectrics has been demonstrated [1,2]. On the other hand, due to a quasi-ballistic behavior of electron transport, III-V channel MOSFETs may be more vulnerable by quantum mechanical effects such as quantum reflection and tunneling, as compared to conventional Si-MOSFETs. In this paper, we investigate quantum transport effects in III-V channel MOSFETs by using a Wigner Monte Carlo (WMC) simulation [3,4], which can fully incorporate the quantum transport effects. As a result, we found that the quantum reflection reduces on-current, while the source-drain (SD) direct tunneling increases subthreshold current even as the channel length is larger than 10 nm.