On the separability of cyclotomic schemes over finite field

Ilia N. Ponomarenko
{"title":"On the separability of cyclotomic schemes over finite field","authors":"Ilia N. Ponomarenko","doi":"10.1090/SPMJ/1684","DOIUrl":null,"url":null,"abstract":"It is proved that with finitely many possible exceptions, each cyclotomic scheme over finite field is determined up to isomorphism by the tensor of 2-dimensional intersection numbers; for infinitely many schemes, this result cannot be improved. As a consequence, the Weisfeiler-Leman dimension of a Paley graph or tournament is at most 3 with possible exception of several small graphs.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/SPMJ/1684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

It is proved that with finitely many possible exceptions, each cyclotomic scheme over finite field is determined up to isomorphism by the tensor of 2-dimensional intersection numbers; for infinitely many schemes, this result cannot be improved. As a consequence, the Weisfeiler-Leman dimension of a Paley graph or tournament is at most 3 with possible exception of several small graphs.
有限域上切环格式的可分性
证明了在有限多个可能的例外情况下,有限域上的每一个环切方案都是由二维交数张量确定为同构的;对于无穷多方案,这个结果不能改进。因此,除了几个小图之外,Paley图或锦标赛的Weisfeiler-Leman维数最多为3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信