Salman Alharthi, Jude Meakin, Chris Wright, Jonathan Fulford
{"title":"The impact of altering participant MRI scanning position on back muscle volume measurements.","authors":"Salman Alharthi, Jude Meakin, Chris Wright, Jonathan Fulford","doi":"10.1259/bjro.20210051","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Muscle volume may reflect both strength and functional capability and hence is a parameter often measured to assess the effect of various interventions. The aim of the current study was to determine the sensitivity of muscle volume calculations on participant postural position and hence gauge possible errors that may arise in longitudinal studies, especially those where an intervention leads to large muscle changes and potentially the degree of spinal curvature.</p><p><strong>Methods: </strong>Twenty healthy participants (22-49 years, 10 male and 10 female), were recruited and MRI images acquired with them lying in four different positions; neutral spine (P1), decreased lordosis (P2), increased lordosis (P3) and neutral spine repeated (P4). Images were analysed in Simpleware ScanIP, and lumbar muscle volume and Cobb's angle, as an indicator of spine curvature, determined.</p><p><strong>Results: </strong>After comparing volume determinations, no statistically significant differences were found for P1 - P2 and P1 - P4, whereas significant changes were determined for P2 - P3 and P1 - P3. P2 and P3 represent the two extremes of spinal curvature with a difference in Cobb's angle of 17°. However, the mean difference between volume determinations was only 29 cm<sup>3</sup>. These results suggest the differences in muscle volume determinations are generally greater with increasing differences in curvature between measurements, but that overall the effects are small.</p><p><strong>Conclusions: </strong>Thus, generally, spinal muscle volume determinations are robust in terms of participant positioning.</p><p><strong>Advances in knowledge: </strong>Differences in muscle volume calculations appear to become larger the greater the difference in spinal curvature between positions. Thus, spinal curvature should not have a major impact on the results of spinal muscle volume determinations following interventions in longitudinal studies.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1259/bjro.20210051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Muscle volume may reflect both strength and functional capability and hence is a parameter often measured to assess the effect of various interventions. The aim of the current study was to determine the sensitivity of muscle volume calculations on participant postural position and hence gauge possible errors that may arise in longitudinal studies, especially those where an intervention leads to large muscle changes and potentially the degree of spinal curvature.
Methods: Twenty healthy participants (22-49 years, 10 male and 10 female), were recruited and MRI images acquired with them lying in four different positions; neutral spine (P1), decreased lordosis (P2), increased lordosis (P3) and neutral spine repeated (P4). Images were analysed in Simpleware ScanIP, and lumbar muscle volume and Cobb's angle, as an indicator of spine curvature, determined.
Results: After comparing volume determinations, no statistically significant differences were found for P1 - P2 and P1 - P4, whereas significant changes were determined for P2 - P3 and P1 - P3. P2 and P3 represent the two extremes of spinal curvature with a difference in Cobb's angle of 17°. However, the mean difference between volume determinations was only 29 cm3. These results suggest the differences in muscle volume determinations are generally greater with increasing differences in curvature between measurements, but that overall the effects are small.
Conclusions: Thus, generally, spinal muscle volume determinations are robust in terms of participant positioning.
Advances in knowledge: Differences in muscle volume calculations appear to become larger the greater the difference in spinal curvature between positions. Thus, spinal curvature should not have a major impact on the results of spinal muscle volume determinations following interventions in longitudinal studies.