Comparative study of power forecasting methods for wind farms

Kunal Lohia, S. Garg, N. Shrivastava, B. K. Panigrahi
{"title":"Comparative study of power forecasting methods for wind farms","authors":"Kunal Lohia, S. Garg, N. Shrivastava, B. K. Panigrahi","doi":"10.1109/ICCPCT.2015.7159429","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of various forecasting models for wind power. With the growing wind power usage in the power system, wind power forecasting is very much needed to help the power system in unit commitment, economic scheduling and reserve allocation problems. Wind power forecasting using autoregressive integrated moving average model, surface fitting model, neural networks, extreme learning machine and online sequential extreme learning machine is carried out in this paper. The performance characteristics of different forecasting models have been compared by applying different measure of errors such as bias, mean absolute error, root mean square error and standard deviation. The effectiveness of online sequential extreme learning machine is evaluated on the given wind power data and the results demonstrate that the online sequential extreme learning machine performance characteristic is better as compared with the other forecasting models.","PeriodicalId":6650,"journal":{"name":"2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]","volume":"20 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2015.7159429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparative study of various forecasting models for wind power. With the growing wind power usage in the power system, wind power forecasting is very much needed to help the power system in unit commitment, economic scheduling and reserve allocation problems. Wind power forecasting using autoregressive integrated moving average model, surface fitting model, neural networks, extreme learning machine and online sequential extreme learning machine is carried out in this paper. The performance characteristics of different forecasting models have been compared by applying different measure of errors such as bias, mean absolute error, root mean square error and standard deviation. The effectiveness of online sequential extreme learning machine is evaluated on the given wind power data and the results demonstrate that the online sequential extreme learning machine performance characteristic is better as compared with the other forecasting models.
风电场功率预测方法的比较研究
本文对各种风力发电预测模型进行了比较研究。随着风电在电力系统中的使用日益增加,风电预测对电力系统的机组承诺、经济调度和备用分配等问题具有重要的帮助作用。本文采用自回归综合移动平均模型、曲面拟合模型、神经网络、极值学习机和在线顺序极值学习机对风电进行预测。通过采用偏差、平均绝对误差、均方根误差和标准差等不同的误差度量,比较了不同预测模型的性能特征。在给定的风电数据上对在线序贯极值学习机的有效性进行了评价,结果表明,与其他预测模型相比,在线序贯极值学习机的性能特征更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信