{"title":"On powers of conjugacy classes in finite groups","authors":"A. Beltrán","doi":"10.1515/jgth-2021-0156","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝐾 and 𝐷 be conjugacy classes of a finite group 𝐺, and suppose that we have K n = D ∪ D - 1 K^{n}=D\\cup D^{-1} for some integer n ≥ 2 n\\geq 2 . Under these assumptions, it was conjectured that ⟨ K ⟩ \\langle K\\rangle must be a (normal) solvable subgroup of 𝐺. Recently R. D. Camina has demonstrated that the conjecture is valid for any n ≥ 4 n\\geq 4 , and this is done by applying combinatorial results, the main of which concerns subsets with small doubling in a finite group. In this note, we solve the case n = 3 n=3 by appealing to other combinatorial results, such as an estimate of the cardinality of the product of two normal sets in a finite group as well as to some recent techniques and theorems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2021-0156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Let 𝐾 and 𝐷 be conjugacy classes of a finite group 𝐺, and suppose that we have K n = D ∪ D - 1 K^{n}=D\cup D^{-1} for some integer n ≥ 2 n\geq 2 . Under these assumptions, it was conjectured that ⟨ K ⟩ \langle K\rangle must be a (normal) solvable subgroup of 𝐺. Recently R. D. Camina has demonstrated that the conjecture is valid for any n ≥ 4 n\geq 4 , and this is done by applying combinatorial results, the main of which concerns subsets with small doubling in a finite group. In this note, we solve the case n = 3 n=3 by appealing to other combinatorial results, such as an estimate of the cardinality of the product of two normal sets in a finite group as well as to some recent techniques and theorems.