Ahmad Jobran Al-Mahasneh, S. Anavatti, M. Garratt, Mahardhika Pratama
{"title":"Stable Adaptive Controller Based on Generalized Regression Neural Networks and Sliding Mode Control for a Class of Nonlinear Time-Varying Systems","authors":"Ahmad Jobran Al-Mahasneh, S. Anavatti, M. Garratt, Mahardhika Pratama","doi":"10.1109/TSMC.2019.2915950","DOIUrl":null,"url":null,"abstract":"Finding synergy between a variety of control and estimation approaches can lead to effective solutions for controlling nonlinear dynamic systems in an efficient and systematic manner. In this paper, a novel controller design consisting of generalized regression neural networks (GRNNs) and sliding mode control (SMC) is proposed to control nonlinear multi-input and multi-output (MIMO) dynamic systems. The proposed design transforms GRNN from an offline regression model to an online adaptive controller. The suggested controller does not require any pretraining and it learns quickly from scratch. It uses a low computational complexity algorithm to provide accurate and stable performance. The proposed controller (GRNNSMC) performance is verified with a generic MIMO nonlinear dynamic system and a hexacopter model with a variable center of gravity. The results are compared with the standard PID controller. In addition, the stability of the GRNNSMC controller is verified using the Lyapunov stability method.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"1 1","pages":"2525-2535"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2915950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Finding synergy between a variety of control and estimation approaches can lead to effective solutions for controlling nonlinear dynamic systems in an efficient and systematic manner. In this paper, a novel controller design consisting of generalized regression neural networks (GRNNs) and sliding mode control (SMC) is proposed to control nonlinear multi-input and multi-output (MIMO) dynamic systems. The proposed design transforms GRNN from an offline regression model to an online adaptive controller. The suggested controller does not require any pretraining and it learns quickly from scratch. It uses a low computational complexity algorithm to provide accurate and stable performance. The proposed controller (GRNNSMC) performance is verified with a generic MIMO nonlinear dynamic system and a hexacopter model with a variable center of gravity. The results are compared with the standard PID controller. In addition, the stability of the GRNNSMC controller is verified using the Lyapunov stability method.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.