Alessio Alesci, Emmanuele Messina, Krystyna Zuwala, Angelo Fumia, Anthea Miller, Roberta D'Angelo, Michal Kuciel, Marco Albano, Serena Savoca, Gioele Capillo
{"title":"Mechanosensory cells in annelid oligochaete Lumbricus terrestris (Linnaeus, 1758): A new insight on worm evolution","authors":"Alessio Alesci, Emmanuele Messina, Krystyna Zuwala, Angelo Fumia, Anthea Miller, Roberta D'Angelo, Michal Kuciel, Marco Albano, Serena Savoca, Gioele Capillo","doi":"10.1111/azo.12475","DOIUrl":null,"url":null,"abstract":"<p>Ciliated and non-ciliated mechanosensory cells in invertebrates have intricate cytoskeletal structures that, combined with microtubules, act as a mechanical link between external stimulus and signal processing. As a result, they can perceive forces like touch, cuticle deformation, gravity and sound. Through the expression of antibodies against serotonin (5-HT), calbindin, inducible nitric oxide synthase (iNOS) and α-smooth muscle actin (αSMA), this research aims to investigate mechanosensory cells in the integument of <i>Lumbricus terrestris</i> (Linnaeus, 1758) in an evolutionary perspective. In the epidermis, we discovered isolated mechanosensory cells that were immunopositive to every antibody examined. Our findings improve the knowledge and the evolution of annelid sensory biology adding new insights on the sensory signal transduction and help to better understand the morpho-structural adaptations of invertebrate skin on an evolutionary scale and to give more taxonomic data for species distinction.</p>","PeriodicalId":50945,"journal":{"name":"Acta Zoologica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Zoologica","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/azo.12475","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ciliated and non-ciliated mechanosensory cells in invertebrates have intricate cytoskeletal structures that, combined with microtubules, act as a mechanical link between external stimulus and signal processing. As a result, they can perceive forces like touch, cuticle deformation, gravity and sound. Through the expression of antibodies against serotonin (5-HT), calbindin, inducible nitric oxide synthase (iNOS) and α-smooth muscle actin (αSMA), this research aims to investigate mechanosensory cells in the integument of Lumbricus terrestris (Linnaeus, 1758) in an evolutionary perspective. In the epidermis, we discovered isolated mechanosensory cells that were immunopositive to every antibody examined. Our findings improve the knowledge and the evolution of annelid sensory biology adding new insights on the sensory signal transduction and help to better understand the morpho-structural adaptations of invertebrate skin on an evolutionary scale and to give more taxonomic data for species distinction.
期刊介绍:
Published regularly since 1920, Acta Zoologica has retained its position as one of the world''s leading journals in the field of animal organization, development, structure and function. Each issue publishes original research of interest to zoologists and physiologists worldwide, in the field of animal structure (from the cellular to the organismic level) and development with emphasis on functional, comparative and phylogenetic aspects. Occasional review articles are also published, as well as book reviews.