Making use of noise in biological systems

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yaron Ilan
{"title":"Making use of noise in biological systems","authors":"Yaron Ilan","doi":"10.1016/j.pbiomolbio.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Disorder and noise are inherent in biological systems. They are required to provide systems with the advantages required for proper functioning. Noise is a part of the flexibility and plasticity of biological systems. It provides systems with increased routes, improves information transfer, and assists in response triggers. This paper reviews recent studies on noise at the genome, cellular, and whole organ levels. We focus on the need to use noise in system engineering. We present some of the challenges faced in studying noise. Optimizing the efficiency of complex systems requires a degree of variability in their functions within certain limits. Constrained noise can be considered a method for improving system robustness by regulating noise levels in continuously dynamic settings. The digital pill-based artificial intelligence (AI)-based platform is the first to implement second-generation AI comprising variability-based signatures. This platform enhances the efficacy of the therapeutic regimens. Systems requiring variability and mechanisms regulating noise are mandatory for understanding biological functions.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

Abstract

Disorder and noise are inherent in biological systems. They are required to provide systems with the advantages required for proper functioning. Noise is a part of the flexibility and plasticity of biological systems. It provides systems with increased routes, improves information transfer, and assists in response triggers. This paper reviews recent studies on noise at the genome, cellular, and whole organ levels. We focus on the need to use noise in system engineering. We present some of the challenges faced in studying noise. Optimizing the efficiency of complex systems requires a degree of variability in their functions within certain limits. Constrained noise can be considered a method for improving system robustness by regulating noise levels in continuously dynamic settings. The digital pill-based artificial intelligence (AI)-based platform is the first to implement second-generation AI comprising variability-based signatures. This platform enhances the efficacy of the therapeutic regimens. Systems requiring variability and mechanisms regulating noise are mandatory for understanding biological functions.

利用生物系统中的噪声
紊乱和噪音是生物系统固有的。它们需要为系统提供正确运行所需的优势。噪声是生物系统灵活性和可塑性的一部分。它为系统提供了更多的路线,改进了信息传输,并有助于触发响应。本文综述了近年来在基因组、细胞和整个器官水平上对噪声的研究。我们关注在系统工程中使用噪声的必要性。我们介绍了在研究噪声时面临的一些挑战。优化复杂系统的效率需要在一定限度内使其功能具有一定程度的可变性。约束噪声可以被认为是一种通过在连续动态设置中调节噪声水平来提高系统鲁棒性的方法。基于数字药丸的人工智能(AI)平台是第一个实现包括基于变异性的特征的第二代人工智能的平台。该平台提高了治疗方案的疗效。需要可变性的系统和调节噪声的机制对于理解生物功能是强制性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信