Transparent diamond-based electrolyzer for integration with solar cell

C. Pietzka, Z. Gao, Y. Xu, E. Kohn
{"title":"Transparent diamond-based electrolyzer for integration with solar cell","authors":"C. Pietzka, Z. Gao, Y. Xu, E. Kohn","doi":"10.1109/DRC.2012.6257014","DOIUrl":null,"url":null,"abstract":"In this study a concept of an electrolyzer operating in rather aggressive solutions (and potentially salt water) and with the potential of monolithic integration with a solar cell structure has been presented. The electrolyzer structure is based on a metal dot modified CVD diamond electrode structure grown by HFCVD, a technique which can be scaled to large surface areas. Presently, only the III-Nitride semiconductor materials system seems compatible with the growth conditions required for high-quality NCD electrode material. However, here the incorporation of low bandgap InGaN quantum well structures would be needed, but is still outstanding.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"3 1","pages":"279-280"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6257014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study a concept of an electrolyzer operating in rather aggressive solutions (and potentially salt water) and with the potential of monolithic integration with a solar cell structure has been presented. The electrolyzer structure is based on a metal dot modified CVD diamond electrode structure grown by HFCVD, a technique which can be scaled to large surface areas. Presently, only the III-Nitride semiconductor materials system seems compatible with the growth conditions required for high-quality NCD electrode material. However, here the incorporation of low bandgap InGaN quantum well structures would be needed, but is still outstanding.
与太阳能电池集成的透明钻石基电解槽
在这项研究中,提出了在腐蚀性溶液(可能是盐水)中运行的电解槽的概念,并提出了与太阳能电池结构集成的潜力。电解槽结构是基于HFCVD技术生长的金属点修饰CVD金刚石电极结构,该技术可以缩放到大表面积。目前,似乎只有iii -氮化物半导体材料体系符合高质量NCD电极材料所需的生长条件。然而,在这里,低带隙InGaN量子阱结构的结合是必要的,但仍然是突出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信