{"title":"Biological effects of rotating magnetic field: A review from 1969 to 2021","authors":"Yunpeng Wei, Xiaomei Wang","doi":"10.1016/j.pbiomolbio.2022.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>As one of the common variable magnetic fields, rotating magnetic field (RMF) plays a crucial role in modern human society. The biological effects of RMF have been studied for over half a century, and various results have been discovered. Several reports have shown that RMF can inhibit the growth of various types of cancer cells <em>in vitro</em> and <em>in vivo</em><span><span> and improve clinical symptoms of patients with advanced cancer. It can also affect endogenous opioid systems and rhythm in central nerve systems, promote </span>nerve regeneration<span> and regulate neural electrophysiological activity in the human brain. In addition, RMF can influence the growth and metabolic activity of some microorganisms, alter the properties of fermentation products, inhibit the growth of some harmful bacteria and increase the susceptibility of antibiotic-resistant bacteria to common antibiotics. Besides, there are other biological effects of RMF on blood, bone, prenatal exposure, enzyme activity, immune function, aging, parasite, endocrine, wound healing, and plants. These discoveries demonstrate that RMF have great application potential in health care, medical treatment, fermentation engineering, and even agriculture. However, in some cases like pregnancy, RMF exposure may need to be avoided. Finally, the specific mechanisms of RMF's biological effects remain unrevealed, despite various hypotheses and theories. It does not prevent us from using it for our good.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610722001341","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
As one of the common variable magnetic fields, rotating magnetic field (RMF) plays a crucial role in modern human society. The biological effects of RMF have been studied for over half a century, and various results have been discovered. Several reports have shown that RMF can inhibit the growth of various types of cancer cells in vitro and in vivo and improve clinical symptoms of patients with advanced cancer. It can also affect endogenous opioid systems and rhythm in central nerve systems, promote nerve regeneration and regulate neural electrophysiological activity in the human brain. In addition, RMF can influence the growth and metabolic activity of some microorganisms, alter the properties of fermentation products, inhibit the growth of some harmful bacteria and increase the susceptibility of antibiotic-resistant bacteria to common antibiotics. Besides, there are other biological effects of RMF on blood, bone, prenatal exposure, enzyme activity, immune function, aging, parasite, endocrine, wound healing, and plants. These discoveries demonstrate that RMF have great application potential in health care, medical treatment, fermentation engineering, and even agriculture. However, in some cases like pregnancy, RMF exposure may need to be avoided. Finally, the specific mechanisms of RMF's biological effects remain unrevealed, despite various hypotheses and theories. It does not prevent us from using it for our good.