A. Lay-Ekuakille, G. Vendramin, A. Trotta, I. Sgura, T. Zielinski, P. Turcza
{"title":"Accuracy assessment of sensed biomedical images for myocardial infarction prediction","authors":"A. Lay-Ekuakille, G. Vendramin, A. Trotta, I. Sgura, T. Zielinski, P. Turcza","doi":"10.1109/ICSENST.2008.4757147","DOIUrl":null,"url":null,"abstract":"Myocardial infarction (MI) can be defined from a number of different perspectives related to clinical, electrocardiographic (ECG), biochemical and pathologic characteristics. The term MI also has social and psychological implications, both as an indicator of a major health problem and as a measure of disease prevalence in population statistics and outcomes of clinical trials. In the distant past, a general consensus existed for the clinical entity designated as MI. In studies of disease prevalence by the World Health Organization (WHO), MI was defined by a combination of two of three characteristics: typical symptoms (i.e., chest discomfort), enzyme rise and a typical ECG pattern involving the development of Q waves. Biomedical sensors dedicated to acquire signals from cardiac instrumentation, even if sophisticated, cannot precisely reveal and help doctors to understand, at a glance, pathologies leading towards MI. This paper traces out an integrated algorithm based on a combination of level set evolution and variational approach according to Mumford-Shah model.","PeriodicalId":6299,"journal":{"name":"2008 3rd International Conference on Sensing Technology","volume":"21 1","pages":"457-461"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Sensing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2008.4757147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Myocardial infarction (MI) can be defined from a number of different perspectives related to clinical, electrocardiographic (ECG), biochemical and pathologic characteristics. The term MI also has social and psychological implications, both as an indicator of a major health problem and as a measure of disease prevalence in population statistics and outcomes of clinical trials. In the distant past, a general consensus existed for the clinical entity designated as MI. In studies of disease prevalence by the World Health Organization (WHO), MI was defined by a combination of two of three characteristics: typical symptoms (i.e., chest discomfort), enzyme rise and a typical ECG pattern involving the development of Q waves. Biomedical sensors dedicated to acquire signals from cardiac instrumentation, even if sophisticated, cannot precisely reveal and help doctors to understand, at a glance, pathologies leading towards MI. This paper traces out an integrated algorithm based on a combination of level set evolution and variational approach according to Mumford-Shah model.