{"title":"On transport properties of CNT metal/semiconductor/metal heterostructures using first principles methods","authors":"P. Bai, K. Lam, Ken Chang, E. Li","doi":"10.1109/NANO.2007.4601251","DOIUrl":null,"url":null,"abstract":"The electron transport properties of carbon nanotube (CNT) metal/semiconductor/metal heterostructures are investigated using the first principles method based on density functional theory (DFT) and non-equilibrium Green's function (NEGF). The atomic heterostructures are constructed by sandwiching a zigzag semiconducting CNT between two zigzag metallic CNTs with different diameters. The density of states, transmission function, conductance and current-voltage characteristics of the constructed heterostructures are simulated using the DFT-NEGF method. Results show that the imperfect interface in the CNT heterostructures affects the high-bias conductance significantly. The reduction of high-bias conductance is proportional to diameter ratio of two CNTs connected. The diameter of metallic CNT decides the threshold voltage and low-bias conductance of the heterostructures. The larger the diameter is, the lower the threshold voltage is and the higher low-bias conductance is.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"63 1","pages":"549-553"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electron transport properties of carbon nanotube (CNT) metal/semiconductor/metal heterostructures are investigated using the first principles method based on density functional theory (DFT) and non-equilibrium Green's function (NEGF). The atomic heterostructures are constructed by sandwiching a zigzag semiconducting CNT between two zigzag metallic CNTs with different diameters. The density of states, transmission function, conductance and current-voltage characteristics of the constructed heterostructures are simulated using the DFT-NEGF method. Results show that the imperfect interface in the CNT heterostructures affects the high-bias conductance significantly. The reduction of high-bias conductance is proportional to diameter ratio of two CNTs connected. The diameter of metallic CNT decides the threshold voltage and low-bias conductance of the heterostructures. The larger the diameter is, the lower the threshold voltage is and the higher low-bias conductance is.