Most Stringent Test of Independence in W× K Contingency Tables for Nominal Data Using Monte Carlo Simulations

Shakeel Shahzad, S. Khan, Atiq Ur Rehman
{"title":"Most Stringent Test of Independence in W× K Contingency Tables for Nominal Data Using Monte Carlo Simulations","authors":"Shakeel Shahzad, S. Khan, Atiq Ur Rehman","doi":"10.26710/sbsee.v4i1.2145","DOIUrl":null,"url":null,"abstract":"\n \n \n \nPurpose:  This study aims to analyze the performance of tests of independence for nominal data. Tests of independence is one of the most used statistical techniques in econometrics. A principal interest in many studies regarding contingency tables is to test if the variables are independent in contingency table (CT’s). Many standard tests are available for nominal data. However, there is no clarity about choice of tests for various kinds of Data Generating Process (DGP) of nominal data.  \nDesign/Methodology/Approach: This study used stringent criteria (SC) for evaluation of optimal test of independence among a large numbers of tests of independence in w × k contingency tables using Monte Carlo simulations. \nFindings: The most stringent test of independence is Logarithmic Minimum Square (LMS) in w × k contingency table for nominal data.  \nImplications/Originality/Value: This Paper gives very clear guidance to practitioner about use of tests of independence for nominal data. Results recommends based on solid estimation of Monte Carlo Simulation and algorithm for a variety of Data Generating Process (DGP) in w × k contingency tables. We came to conclusion and recommended clearly that Logarithmic Minimum Square (LMS) is the optimal and most stringent test, and no other test can beat it for nominal data in w × k contingency tables.              \n \n \n \n","PeriodicalId":34116,"journal":{"name":"Sustainable Business and Society in Emerging Economies","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Business and Society in Emerging Economies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26710/sbsee.v4i1.2145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose:  This study aims to analyze the performance of tests of independence for nominal data. Tests of independence is one of the most used statistical techniques in econometrics. A principal interest in many studies regarding contingency tables is to test if the variables are independent in contingency table (CT’s). Many standard tests are available for nominal data. However, there is no clarity about choice of tests for various kinds of Data Generating Process (DGP) of nominal data.  Design/Methodology/Approach: This study used stringent criteria (SC) for evaluation of optimal test of independence among a large numbers of tests of independence in w × k contingency tables using Monte Carlo simulations. Findings: The most stringent test of independence is Logarithmic Minimum Square (LMS) in w × k contingency table for nominal data.  Implications/Originality/Value: This Paper gives very clear guidance to practitioner about use of tests of independence for nominal data. Results recommends based on solid estimation of Monte Carlo Simulation and algorithm for a variety of Data Generating Process (DGP) in w × k contingency tables. We came to conclusion and recommended clearly that Logarithmic Minimum Square (LMS) is the optimal and most stringent test, and no other test can beat it for nominal data in w × k contingency tables.             
用蒙特卡罗模拟检验wxk列联表对标称数据的最严格独立性
目的:本研究旨在分析标称数据独立性检验的性能。独立性检验是计量经济学中最常用的统计技术之一。关于列联表的许多研究的主要兴趣是检验列联表中的变量是否独立。有许多标准测试可用于标称数据。然而,对于各种标称数据的数据生成过程(DGP)的测试选择,目前还没有明确的规定。设计/方法/方法:本研究使用严格的标准(SC)来评估w × k列联表中大量独立性测试的最佳独立性测试,并使用蒙特卡罗模拟。结果:对于标称数据,最严格的独立性检验是w × k列联表中的对数最小二乘法(LMS)。含义/原创性/价值:本文为从业人员使用名义数据独立性检验提供了非常明确的指导。结果建议基于蒙特卡罗模拟的可靠估计和算法,适用于w × k列联表中的各种数据生成过程(DGP)。我们得出结论,并明确建议对数最小二乘法(LMS)是最优和最严格的测试,对于w × k列联表中的标称数据,没有其他测试可以击败它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
49
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信