Topological reduced products via good ultrafilters

Paul Bankston
{"title":"Topological reduced products via good ultrafilters","authors":"Paul Bankston","doi":"10.1016/0016-660X(79)90002-3","DOIUrl":null,"url":null,"abstract":"<div><p>Good ultrafilters produce topological ultraproducts which enjoy a strong Baire category property (depending upon how good the ultrafilter is). We exploit this property to prove a “uniform boundedness” theorem as well as a theorem which says that, under the Generalized Continuum Hypothesis (GCH), many ultraproduct spaces have families consisting of closed discrete sets of high cardinality such that every nonempty open set contains one of these sets. In another section we relate the strong Baire properties to the infinite distributivity of Boolean Algebras of regular open sets. Finally, we prove that, under the GCH, a great many topological ultrapowers are homeomorphic to the corresponding ultrapower of the space of rational numbers; and we show further that the GCH is indispensable to the proof. A purely model-theoretic application of our methods solves a problem related to the Keisler-Shelah Ultrapower Theorem.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"10 2","pages":"Pages 121-137"},"PeriodicalIF":0.0000,"publicationDate":"1979-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(79)90002-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X79900023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Good ultrafilters produce topological ultraproducts which enjoy a strong Baire category property (depending upon how good the ultrafilter is). We exploit this property to prove a “uniform boundedness” theorem as well as a theorem which says that, under the Generalized Continuum Hypothesis (GCH), many ultraproduct spaces have families consisting of closed discrete sets of high cardinality such that every nonempty open set contains one of these sets. In another section we relate the strong Baire properties to the infinite distributivity of Boolean Algebras of regular open sets. Finally, we prove that, under the GCH, a great many topological ultrapowers are homeomorphic to the corresponding ultrapower of the space of rational numbers; and we show further that the GCH is indispensable to the proof. A purely model-theoretic application of our methods solves a problem related to the Keisler-Shelah Ultrapower Theorem.

拓扑还原产物通过良好的超过滤器
好的超过滤器产生的拓扑超产品具有很强的贝尔类特性(取决于超过滤器的好坏)。我们利用这一性质证明了一个“一致有界性”定理以及在广义连续统假设(GCH)下,许多超积空间具有由高基数的闭离散集组成的族,使得每个非空开集包含这些集中的一个的定理。在另一节中,我们将强Baire性质与正则开集布尔代数的无限分布性联系起来。最后,我们证明了在GCH下,大量的拓扑超幂与有理数空间的相应超幂是同胚的;我们进一步证明了GCH对于证明是不可或缺的。我们的方法的纯模型理论应用解决了与Keisler-Shelah超功率定理相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信