A preconditioner construction for domain decomposition analysis of large scale 3D magnetostatic problems

H. Kanayama, M. Ogino, S. Sugimoto, Qinghe Yao
{"title":"A preconditioner construction for domain decomposition analysis of large scale 3D magnetostatic problems","authors":"H. Kanayama, M. Ogino, S. Sugimoto, Qinghe Yao","doi":"10.1109/ICMSAO.2011.5775641","DOIUrl":null,"url":null,"abstract":"An iterative domain decomposition method is applied to numerical analysis of 3-dimensional (3D) linear magnetostatic problems taking the magnetic vector potential as an unknown function. The iterative domain decomposition method is combined with the Preconditioned Conjugate Gradient (PCG) procedure and the Hierarchical Domain Decomposition Method (HDDM) which is adopted in parallel computing. Our previously employed preconditioner was the Neumann-Neumann method. Numerical results showed that the method was only effective for smaller problems. In this paper, we consider its improvement with the Balancing Domain Decomposition (BDD) preconditioner.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An iterative domain decomposition method is applied to numerical analysis of 3-dimensional (3D) linear magnetostatic problems taking the magnetic vector potential as an unknown function. The iterative domain decomposition method is combined with the Preconditioned Conjugate Gradient (PCG) procedure and the Hierarchical Domain Decomposition Method (HDDM) which is adopted in parallel computing. Our previously employed preconditioner was the Neumann-Neumann method. Numerical results showed that the method was only effective for smaller problems. In this paper, we consider its improvement with the Balancing Domain Decomposition (BDD) preconditioner.
大尺度三维静磁问题区域分解分析的预条件构造
采用迭代域分解方法对三维线性静磁问题进行了数值分析,并将磁矢量势作为未知函数。迭代域分解方法与预条件共轭梯度法(PCG)和并行计算中采用的层次域分解法(HDDM)相结合。我们之前使用的预条件是诺伊曼-诺伊曼方法。数值结果表明,该方法仅对较小的问题有效。在本文中,我们考虑了平衡域分解(BDD)预条件对它的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信