TRPM channels and magnesium in early embryonic development.

Y. Komiya, L. Runnels
{"title":"TRPM channels and magnesium in early embryonic development.","authors":"Y. Komiya, L. Runnels","doi":"10.1387/ijdb.150196lr","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg(2+)) is the second most abundant cellular cation and is essential for all stages of life, from the early embryo to adult. Mg(2+) deficiency causes or contributes to many human diseases, including migraine headaches, Parkinson's disease, Alzheimer's disease, hypotension, type 2 diabetes mellitus and cardiac arrhythmias. Although the concentration of Mg(2+) in the extracellular environment can vary significantly, the total intracellular Mg(2+) concentration is actively maintained within a relatively narrow range (14 - 20 mM) via tight, yet poorly understood, regulation of intracellular Mg(2+)by Mg(2+) transporters and Mg(2+)-permeant ion channels. Recent studies have continued to add to the growing number of Mg(2+) transporters and ion channels involved in Mg(2+) homeostasis, including TRPM6 and TRPM7, members of the transient receptor potential (TRP) ion channel family. Mutations in TRPM6, including amino acid substitutions that prevent its heterooligomerization with TRPM7, occur in the rare autosomal-recessive disease hypomagnesemia with secondary hypocalcemia (HSH). Genetic ablation of either gene in mice results in early embryonic lethality, raising the question of whether these channels' capacity to mediate Mg(2+) influx plays an important role in embryonic development. Here we review what is known of the function of Mg(2+) in early development and summarize recent findings regarding the function of the TRPM6 and TRPM7 ion channels during embryogenesis.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.150196lr","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Magnesium (Mg(2+)) is the second most abundant cellular cation and is essential for all stages of life, from the early embryo to adult. Mg(2+) deficiency causes or contributes to many human diseases, including migraine headaches, Parkinson's disease, Alzheimer's disease, hypotension, type 2 diabetes mellitus and cardiac arrhythmias. Although the concentration of Mg(2+) in the extracellular environment can vary significantly, the total intracellular Mg(2+) concentration is actively maintained within a relatively narrow range (14 - 20 mM) via tight, yet poorly understood, regulation of intracellular Mg(2+)by Mg(2+) transporters and Mg(2+)-permeant ion channels. Recent studies have continued to add to the growing number of Mg(2+) transporters and ion channels involved in Mg(2+) homeostasis, including TRPM6 and TRPM7, members of the transient receptor potential (TRP) ion channel family. Mutations in TRPM6, including amino acid substitutions that prevent its heterooligomerization with TRPM7, occur in the rare autosomal-recessive disease hypomagnesemia with secondary hypocalcemia (HSH). Genetic ablation of either gene in mice results in early embryonic lethality, raising the question of whether these channels' capacity to mediate Mg(2+) influx plays an important role in embryonic development. Here we review what is known of the function of Mg(2+) in early development and summarize recent findings regarding the function of the TRPM6 and TRPM7 ion channels during embryogenesis.
TRPM通道和镁在早期胚胎发育中的作用。
镁(Mg(2+))是第二丰富的细胞阳离子,从早期胚胎到成年,在生命的各个阶段都是必不可少的。镁(2+)缺乏导致或促成了许多人类疾病,包括偏头痛、帕金森病、阿尔茨海默病、低血压、2型糖尿病和心律失常。尽管细胞外环境中Mg(2+)的浓度可以有很大的变化,但通过Mg(2+)转运体和Mg(2+)渗透离子通道对细胞内Mg(2+)的严格调控,胞内Mg(2+)的总浓度被积极地维持在一个相对狭窄的范围内(14 - 20 mM)。最近的研究继续增加了越来越多的Mg(2+)转运体和参与Mg(2+)稳态的离子通道,包括TRPM6和TRPM7,它们是瞬时受体电位(TRP)离子通道家族的成员。TRPM6的突变,包括阻止其与TRPM7异聚的氨基酸替换,发生在罕见的常染色体隐性疾病低镁血症伴继发性低钙血症(HSH)中。在小鼠中,任何一种基因的基因消融都会导致早期胚胎死亡,这就提出了这些通道介导Mg(2+)内流的能力是否在胚胎发育中起重要作用的问题。在这里,我们回顾了Mg(2+)在早期发育中的已知功能,并总结了最近关于TRPM6和TRPM7离子通道在胚胎发生过程中的功能的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信