{"title":"Polygraph: automatically generating signatures for polymorphic worms","authors":"J. Newsome, B. Karp, D. Song","doi":"10.1109/SP.2005.15","DOIUrl":null,"url":null,"abstract":"It is widely believed that content-signature-based intrusion detection systems (IDS) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content substrings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives.","PeriodicalId":6366,"journal":{"name":"2005 IEEE Symposium on Security and Privacy (S&P'05)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"735","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Security and Privacy (S&P'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2005.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 735
Abstract
It is widely believed that content-signature-based intrusion detection systems (IDS) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content substrings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives.