The Role of Concentration, Site, and O Vacancy on Magnetic and Optical Properties of Cu‐Doped Anatase TiO2

Yao Yang, Yibin Hu, Yan Huang, Xiaofang Wang, Xiaoshuang Chen
{"title":"The Role of Concentration, Site, and O Vacancy on Magnetic and Optical Properties of Cu‐Doped Anatase TiO2","authors":"Yao Yang, Yibin Hu, Yan Huang, Xiaofang Wang, Xiaoshuang Chen","doi":"10.1002/pssb.202300157","DOIUrl":null,"url":null,"abstract":"Cu‐doped TiO2$\\left(\\text{TiO}\\right)_{2}$ is a dilute magnetic semiconductor with excellent electrical, magnetic, and optical properties. Herein, first‐principles methods are employed to investigate its electronic structure, magnetic properties, and optical behavior. The results demonstrate that Cu‐doped TiO2$\\left(\\text{TiO}\\right)_{2}$ exhibits intrinsic ferromagnetism. The presence of O vacancies facilitates the ferromagnetic exchange between Cu ions by forming bound magnetic polarons (BMPs). This finding validates the BMPs model and explains for the decrease in magnetic properties during annealing under O2 conditions. As the concentration of Cu increases, the system undergoes a transition from a semiconductor to a metal. Cu ions exhibit a preference for a compact configuration and display either paramagnetism or antiferromagnetism. The spin polarization can be effectively controlled from 0% to 100% by adjusting the concentration and site of Cu. Additionally, Cu doping leads to a reduction in the bandgap and an extension of the absorption range into the infrared region. The absorption intensity is positively correlated with the concentration. The presence of a spin‐polarized intermediate band indicates a correlation between the spin of the excited electron and the energy of the absorbed photon. Overall, Cu‐doped TiO2$\\left(\\text{TiO}\\right)_{2}$ shows significant potential for applications in spintronics and spin‐related optics, including photospintronics and spin photocatalysis.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cu‐doped TiO2$\left(\text{TiO}\right)_{2}$ is a dilute magnetic semiconductor with excellent electrical, magnetic, and optical properties. Herein, first‐principles methods are employed to investigate its electronic structure, magnetic properties, and optical behavior. The results demonstrate that Cu‐doped TiO2$\left(\text{TiO}\right)_{2}$ exhibits intrinsic ferromagnetism. The presence of O vacancies facilitates the ferromagnetic exchange between Cu ions by forming bound magnetic polarons (BMPs). This finding validates the BMPs model and explains for the decrease in magnetic properties during annealing under O2 conditions. As the concentration of Cu increases, the system undergoes a transition from a semiconductor to a metal. Cu ions exhibit a preference for a compact configuration and display either paramagnetism or antiferromagnetism. The spin polarization can be effectively controlled from 0% to 100% by adjusting the concentration and site of Cu. Additionally, Cu doping leads to a reduction in the bandgap and an extension of the absorption range into the infrared region. The absorption intensity is positively correlated with the concentration. The presence of a spin‐polarized intermediate band indicates a correlation between the spin of the excited electron and the energy of the absorbed photon. Overall, Cu‐doped TiO2$\left(\text{TiO}\right)_{2}$ shows significant potential for applications in spintronics and spin‐related optics, including photospintronics and spin photocatalysis.
浓度、位置和O空位对Cu掺杂锐钛矿TiO2磁性和光学性能的影响
Cu掺杂TiO2$\left(\text{TiO}\right)_{2}$是一种稀磁性半导体,具有优异的电学、磁学和光学性能。本文采用第一性原理方法研究了其电子结构、磁性和光学特性。结果表明,Cu掺杂TiO2$\left(\text{TiO}\right)_{2}$具有本征铁磁性。O空位的存在通过形成束缚极化子(BMPs)促进了Cu离子之间的铁磁交换。这一发现验证了BMPs模型,并解释了在O2条件下退火过程中磁性能下降的原因。随着Cu浓度的增加,体系经历了从半导体到金属的转变。铜离子表现出致密结构的偏好,并显示顺磁性或反铁磁性。通过调整Cu的浓度和位置,可以有效地控制自旋极化从0%到100%。此外,Cu掺杂导致带隙减小,吸收范围扩展到红外区域。吸收强度与浓度呈正相关。自旋极化中间带的存在表明受激电子的自旋与吸收光子的能量之间存在相关性。总的来说,Cu掺杂TiO2$\left(\text{TiO}\right)_{2}$在自旋电子学和自旋相关光学领域显示出巨大的应用潜力,包括光自旋电子学和自旋光催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信