Prediction of carcass composition and meat and fat quality using sensing technologies: A review

P. Leighton, J. Segura, S. Lam, M. Marcoux, Xinyi Wei, Ó. López-Campos, P. Soladoye, M. Dugan, M. Juárez, N. Prieto
{"title":"Prediction of carcass composition and meat and fat quality using sensing technologies: A review","authors":"P. Leighton, J. Segura, S. Lam, M. Marcoux, Xinyi Wei, Ó. López-Campos, P. Soladoye, M. Dugan, M. Juárez, N. Prieto","doi":"10.22175/mmb.12951","DOIUrl":null,"url":null,"abstract":"Consumer demand for high-quality healthy food is increasing,  thus meat processors require the means toassess these rapidly, accurately, and inexpensively. Traditional methods forquality assessments are time-consuming, expensive, invasive, and have potentialto negatively impact the environment. Consequently, emphasis has been put onfinding non-destructive, fast, and accurate technologies for productcomposition and quality evaluation. Research in this area is advancing rapidlythrough recent developments in the areas of portability, accuracy, and machinelearning. The present review, therefore, critically evaluates and summarizes developmentsof popular non-invasive technologies (i.e., from imaging to spectroscopicsensing technologies) for estimating beef, pork, and lamb composition andquality, which will hopefully assist in the implementation of thesetechnologies for rapid evaluation/real-timegrading of livestock products in the nearfuture.","PeriodicalId":18316,"journal":{"name":"Meat and Muscle Biology","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat and Muscle Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22175/mmb.12951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Consumer demand for high-quality healthy food is increasing,  thus meat processors require the means toassess these rapidly, accurately, and inexpensively. Traditional methods forquality assessments are time-consuming, expensive, invasive, and have potentialto negatively impact the environment. Consequently, emphasis has been put onfinding non-destructive, fast, and accurate technologies for productcomposition and quality evaluation. Research in this area is advancing rapidlythrough recent developments in the areas of portability, accuracy, and machinelearning. The present review, therefore, critically evaluates and summarizes developmentsof popular non-invasive technologies (i.e., from imaging to spectroscopicsensing technologies) for estimating beef, pork, and lamb composition andquality, which will hopefully assist in the implementation of thesetechnologies for rapid evaluation/real-timegrading of livestock products in the nearfuture.
利用传感技术预测胴体组成和肉脂品质:综述
消费者对高质量健康食品的需求正在增加,因此肉类加工商需要快速、准确和廉价地评估这些食品的方法。传统的质量评估方法耗时、昂贵、具有侵入性,并且对环境有潜在的负面影响。因此,重点放在寻找无损、快速、准确的产品成分和质量评估技术上。随着便携性、准确性和机器学习领域的最新发展,这一领域的研究正在迅速推进。因此,本文将批判性地评估和总结用于估计牛肉、猪肉和羊肉成分和质量的流行非侵入性技术(即从成像到光谱传感技术)的发展,这将有助于在不久的将来实现这些技术对畜产品的快速评估/实时分级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信