Temperature-Dependent Ultrasonic Properties of Semiconducting M2CO2 (M= Ti, Zr, Hf) MXenes

P. Yadawa, N. Chaurasiya, S. Rai, A. Prajapati
{"title":"Temperature-Dependent Ultrasonic Properties of Semiconducting M2CO2 (M= Ti, Zr, Hf) MXenes","authors":"P. Yadawa, N. Chaurasiya, S. Rai, A. Prajapati","doi":"10.3329/jsr.v14i3.56976","DOIUrl":null,"url":null,"abstract":"Here, we have studied the elastic, ultrasonic, mechanical, and thermal behavior of temperature-dependent hexagonal oxygen-functionalized M2CO2 (M= Ti, Zr, Hf) MXenes. The higher-order linear and nonlinear elastic constants, viz., second-order (SOECs), and third-order (TOECs) have been computed using the Lenard Jones interaction potential model. For mechanical characterization, bulk modulus (B), shear modulus (G), Young's modulus (Y), Pugh's ratio (B / G), Poisson's ratio, and anisotropic index are evaluated using SOECs. Born's stability and Pugh's criteria are used to examine the nature and strength of the MXenes in all the temperatures. For the investigation of anisotropic behavior and its thermophysical properties, temperature-dependent ultrasonic velocities and thermal relaxation time have been calculated along with different orientations from the unique axis of the crystal. The ultrasonic attenuation (UA) of a longitudinal and shear wave due to phonon-phonon (p-p) interaction and thermoelastic relaxation mechanism were investigated for these oxygen-functionalized MXenes. Thermal conductivity is a principal contributor to the behavior of UA due to p-p interactions. Our analysis suggests that semiconductor Ti2CO2 MXenes show superior mechanical properties to other oxygen-functionalized MXenes. Computed elastic, ultrasonic, and thermal properties are correlated to evaluate the microstructural behavior of the materials useful for industrial applications.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i3.56976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we have studied the elastic, ultrasonic, mechanical, and thermal behavior of temperature-dependent hexagonal oxygen-functionalized M2CO2 (M= Ti, Zr, Hf) MXenes. The higher-order linear and nonlinear elastic constants, viz., second-order (SOECs), and third-order (TOECs) have been computed using the Lenard Jones interaction potential model. For mechanical characterization, bulk modulus (B), shear modulus (G), Young's modulus (Y), Pugh's ratio (B / G), Poisson's ratio, and anisotropic index are evaluated using SOECs. Born's stability and Pugh's criteria are used to examine the nature and strength of the MXenes in all the temperatures. For the investigation of anisotropic behavior and its thermophysical properties, temperature-dependent ultrasonic velocities and thermal relaxation time have been calculated along with different orientations from the unique axis of the crystal. The ultrasonic attenuation (UA) of a longitudinal and shear wave due to phonon-phonon (p-p) interaction and thermoelastic relaxation mechanism were investigated for these oxygen-functionalized MXenes. Thermal conductivity is a principal contributor to the behavior of UA due to p-p interactions. Our analysis suggests that semiconductor Ti2CO2 MXenes show superior mechanical properties to other oxygen-functionalized MXenes. Computed elastic, ultrasonic, and thermal properties are correlated to evaluate the microstructural behavior of the materials useful for industrial applications.
半导体M2CO2 (M= Ti, Zr, Hf) MXenes的温度相关超声特性
在这里,我们研究了温度依赖的六方氧功能化M2CO2 (M= Ti, Zr, Hf) MXenes的弹性,超声波,机械和热行为。使用Lenard Jones相互作用势模型计算了高阶线性和非线性弹性常数,即二阶(SOECs)和三阶(TOECs)。力学表征方面,利用soec评估了体积模量(B)、剪切模量(G)、杨氏模量(Y)、皮格比(B / G)、泊松比和各向异性指数。波恩的稳定性和皮尤的标准被用来检查MXenes在所有温度下的性质和强度。为了研究晶体的各向异性及其热物理性质,从晶体的唯一轴出发,沿不同方向计算了超声速度和热弛豫时间随温度的变化。研究了声子-声子(p-p)相互作用引起的纵波和横波的超声衰减(UA)和热弹性弛豫机制。由于p-p相互作用,热导率是UA行为的主要贡献者。我们的分析表明,半导体Ti2CO2 MXenes表现出优于其他氧官能化MXenes的机械性能。计算弹性,超声波和热性能相关联,以评估对工业应用有用的材料的微观结构行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
47
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信