M. A. Jamilludin, I. K. H. Dinatha, Apri I. Supii, Juliasih Partini, D. L. Kusindarta, Y. Yusuf
{"title":"Chemical and Morphological Analysis of Calcium Oxide (CaO) Powder from Sea Urchin (Diadema setosum) Shell","authors":"M. A. Jamilludin, I. K. H. Dinatha, Apri I. Supii, Juliasih Partini, D. L. Kusindarta, Y. Yusuf","doi":"10.4028/p-497n8w","DOIUrl":null,"url":null,"abstract":"Calcium carbonate (CaCO3) has been taken from sea urchin (Diadema setosum) shell and calcinated at several temperatures to obtain calcium oxide (CaO). X-Ray Fluorescence Spectroscopy (XRF) revealed that the powder from this shell had a high Ca level, which increased at a higher temperature. Fourier Transform Infrared Spectroscopy (FTIR) spectra agreed to an increase in Ca level that showed the presence of CaO at 900 °C and 1100 °C; otherwise, CaCO3 disappeared. Using Scanning Electron Microscopy (SEM), the powder morphology was more homogeneous at 900 °C and 1100 °C than at lower temperatures. This morphology was encouraged by decreasing particle size, indicating compound decomposition in the powder and Ca leaved. This decomposition was confirmed by an Energy Dispersive X-ray Spectroscopy (EDS) analysis that showed increased Ca content with higher mass and atomic level at a higher temperature.","PeriodicalId":50368,"journal":{"name":"Industrial and Engineering Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial and Engineering Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-497n8w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Calcium carbonate (CaCO3) has been taken from sea urchin (Diadema setosum) shell and calcinated at several temperatures to obtain calcium oxide (CaO). X-Ray Fluorescence Spectroscopy (XRF) revealed that the powder from this shell had a high Ca level, which increased at a higher temperature. Fourier Transform Infrared Spectroscopy (FTIR) spectra agreed to an increase in Ca level that showed the presence of CaO at 900 °C and 1100 °C; otherwise, CaCO3 disappeared. Using Scanning Electron Microscopy (SEM), the powder morphology was more homogeneous at 900 °C and 1100 °C than at lower temperatures. This morphology was encouraged by decreasing particle size, indicating compound decomposition in the powder and Ca leaved. This decomposition was confirmed by an Energy Dispersive X-ray Spectroscopy (EDS) analysis that showed increased Ca content with higher mass and atomic level at a higher temperature.