{"title":"Structure-aware keypoint tracking for partial occlusion handling","authors":"W. Bouachir, Guillaume-Alexandre Bilodeau","doi":"10.1109/WACV.2014.6836011","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel keypoint-based method for visual object tracking. To represent the target, we use a new model combining color distribution with keypoints. The appearance model also incorporates the spatial layout of the keypoints, encoding the object structure learned during tracking. With this multi-feature appearance model, our Structure-Aware Tracker (SAT) estimates accurately the target location using three main steps. First, the search space is reduced to the most likely image regions with a probabilistic approach. Second, the target location is estimated in the reduced search space using deterministic keypoint matching. Finally, the location prediction is corrected by exploiting the keypoint structural model with a voting-based method. By applying our SAT on several tracking problems, we show that location correction based on structural constraints is a key technique to improve prediction in moderately crowded scenes, even if only a small part of the target is visible. We also conduct comparison with a number of state-of-the-art trackers and demonstrate the competitiveness of the proposed method.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"28 1","pages":"877-884"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper introduces a novel keypoint-based method for visual object tracking. To represent the target, we use a new model combining color distribution with keypoints. The appearance model also incorporates the spatial layout of the keypoints, encoding the object structure learned during tracking. With this multi-feature appearance model, our Structure-Aware Tracker (SAT) estimates accurately the target location using three main steps. First, the search space is reduced to the most likely image regions with a probabilistic approach. Second, the target location is estimated in the reduced search space using deterministic keypoint matching. Finally, the location prediction is corrected by exploiting the keypoint structural model with a voting-based method. By applying our SAT on several tracking problems, we show that location correction based on structural constraints is a key technique to improve prediction in moderately crowded scenes, even if only a small part of the target is visible. We also conduct comparison with a number of state-of-the-art trackers and demonstrate the competitiveness of the proposed method.