Danyang Yue, Yijuan Fan, Juan Lu, Mengxue Zhang, Jin Zhou, Yuying Bai, Jun Pan
{"title":"The Rate of Fluid Shear Stress is a Potent Regulator for Lineage Commitment of Mesenchymal Stem Cells Through Modulating [Ca2+]i, F-actin and Lamin A","authors":"Danyang Yue, Yijuan Fan, Juan Lu, Mengxue Zhang, Jin Zhou, Yuying Bai, Jun Pan","doi":"10.32604/mcb.2019.07084","DOIUrl":null,"url":null,"abstract":": Mesenchymal Stem Cells (MSCs) are recruited to the musculoskeletal system following trauma [1] or chemicals stimulation [2]. The regulation of their differentiation into either bone or cartilage cells is a key question. The fluid shear stress (FSS) is of pivotal importance to the development, function and even the repair of all tissues in the musculoskeletal system [3]. We previously found that MSCs are sensitive enough to distinguish a slight change of FSS stimulation during their differentiation commitment to bone or cartilage cells, and the internal mechanisms. In detail, MSCs were exposed to laminar FSS linearly increased from 0 to 10 dyn/cm 2 in 0, 2, or 20 min and maintained at 10 dyn/cm 2 for a total of 20 min (termed as ΔSS of 0-0', 0-2', and 0-20', respectively, representing more physiological (0-0') and non-physiological (0-2' and 0-20') ΔSS treatments). 0-0' facilitated MSC differentiation towards chondrogenic but not osteogenic phenotype. In contrast, 0-2' promoted MSCs towards osteogenic but not chondrogenic phenotype. 0-20' elicited the modest osteogenic and chondrogenic phenotypes [4]. In addition, we disclosed that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions, demonstrating ΔSS is potent regulator for MSC differentiation control [5]. We found that the ΔSS induced MSC differentiation into osteogenic or chondrogenic cells is directed through the modulation of cation-selective channels (MSCCs), intracellular calcium levels and F-actin. Here we demonstrate that the 0-2' induced significant lamin A; the 0-0' induced similar lamin A to 0-2' and 0-20' elicited less lamin A. A special ΔSS of 0-1' is found to induce osteogenic differentiation comparable to 0-2' and chondrogenic differentiation comparable to 0-0' as well as the most lamin A. Lamin A has no influence on the expression of runx2, a key transcription factor in osteogenic differentiation, but has affected the expression of sox9, a key transcription factor in chondrogenic differentiation. Our study presents evidences that the MSCs are highly sensitive to discriminate different ΔSS loads and differentiate towards the osteogenic or chondrogenic phenotype by regulating MSCCs and the subsequent [Ca 2+ ] i increase, F-actin assembly and Lamin A expression, which provides guidance for training osteoporosis and osteoarthritis patients and stresses the possible application in MSCs linage specification.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.07084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
: Mesenchymal Stem Cells (MSCs) are recruited to the musculoskeletal system following trauma [1] or chemicals stimulation [2]. The regulation of their differentiation into either bone or cartilage cells is a key question. The fluid shear stress (FSS) is of pivotal importance to the development, function and even the repair of all tissues in the musculoskeletal system [3]. We previously found that MSCs are sensitive enough to distinguish a slight change of FSS stimulation during their differentiation commitment to bone or cartilage cells, and the internal mechanisms. In detail, MSCs were exposed to laminar FSS linearly increased from 0 to 10 dyn/cm 2 in 0, 2, or 20 min and maintained at 10 dyn/cm 2 for a total of 20 min (termed as ΔSS of 0-0', 0-2', and 0-20', respectively, representing more physiological (0-0') and non-physiological (0-2' and 0-20') ΔSS treatments). 0-0' facilitated MSC differentiation towards chondrogenic but not osteogenic phenotype. In contrast, 0-2' promoted MSCs towards osteogenic but not chondrogenic phenotype. 0-20' elicited the modest osteogenic and chondrogenic phenotypes [4]. In addition, we disclosed that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions, demonstrating ΔSS is potent regulator for MSC differentiation control [5]. We found that the ΔSS induced MSC differentiation into osteogenic or chondrogenic cells is directed through the modulation of cation-selective channels (MSCCs), intracellular calcium levels and F-actin. Here we demonstrate that the 0-2' induced significant lamin A; the 0-0' induced similar lamin A to 0-2' and 0-20' elicited less lamin A. A special ΔSS of 0-1' is found to induce osteogenic differentiation comparable to 0-2' and chondrogenic differentiation comparable to 0-0' as well as the most lamin A. Lamin A has no influence on the expression of runx2, a key transcription factor in osteogenic differentiation, but has affected the expression of sox9, a key transcription factor in chondrogenic differentiation. Our study presents evidences that the MSCs are highly sensitive to discriminate different ΔSS loads and differentiate towards the osteogenic or chondrogenic phenotype by regulating MSCCs and the subsequent [Ca 2+ ] i increase, F-actin assembly and Lamin A expression, which provides guidance for training osteoporosis and osteoarthritis patients and stresses the possible application in MSCs linage specification.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.