A Novel Generative Adversarial Network simulating the complementary structure of DNA genetic information

Lei Zhang, Haoying Wu
{"title":"A Novel Generative Adversarial Network simulating the complementary structure of DNA genetic information","authors":"Lei Zhang, Haoying Wu","doi":"10.1109/cvidliccea56201.2022.9825138","DOIUrl":null,"url":null,"abstract":"To solve the problems of mode collapse and training instability in generative adversarial networks (GANs), a framework simulating the complementary structure of DNA is proposed, in which a complementary unit and a generalization unit are added. Four latent vectors representing four bases of A, T,C and G are obtained from the complementary unit. Through the combination of latent vectors, the generalization unit avoids the fitting of high-dimensional data distribution and obtains a more comprehensive vector space. Experimental results show that the problems of model collapse and training instability are effectively solved, compared with state-of-the-art VAE-GAN, the FID score increases 52.2%, indicating that the quality and diversity of images generated by the model are improved.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"1 1","pages":"9-14"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9825138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problems of mode collapse and training instability in generative adversarial networks (GANs), a framework simulating the complementary structure of DNA is proposed, in which a complementary unit and a generalization unit are added. Four latent vectors representing four bases of A, T,C and G are obtained from the complementary unit. Through the combination of latent vectors, the generalization unit avoids the fitting of high-dimensional data distribution and obtains a more comprehensive vector space. Experimental results show that the problems of model collapse and training instability are effectively solved, compared with state-of-the-art VAE-GAN, the FID score increases 52.2%, indicating that the quality and diversity of images generated by the model are improved.
一种模拟DNA遗传信息互补结构的新型生成对抗网络
为了解决生成对抗网络(GANs)中的模式崩溃和训练不稳定性问题,提出了一种模拟DNA互补结构的框架,在该框架中加入一个互补单元和一个泛化单元。从互补单元得到代表A、T、C和G四种碱基的四个潜在向量。通过潜向量的组合,泛化单元避免了高维数据分布的拟合,得到了更全面的向量空间。实验结果表明,该方法有效地解决了模型崩溃和训练不稳定的问题,与最先进的vee - gan相比,FID得分提高了52.2%,表明该模型生成的图像质量和多样性得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信