An Analytic Approximation to the Density of Twin Primes

Q4 Multidisciplinary
Dionisel Regalado, Rodel B. Azura
{"title":"An Analytic Approximation to the Density of Twin Primes","authors":"Dionisel Regalado, Rodel B. Azura","doi":"10.32871/RMRJ1806.02.05","DOIUrl":null,"url":null,"abstract":"The highly irregular and rough fluctuations of the twin primes below or equal to a positive integer x  are considered in this study. The occurrence of a twin prime on an interval [0,x] is assumed to be random. In particular, we considered the waiting time between arrivals of twin primes as approximated by a geometric distribution which possesses the discrete memory-less property. For large n, the geometric distribution is well-approximated by the exponential distribution. The number of twin primes less or equal to x will then follow the Poisson distribution with the same rate parameter as the exponential distribution. The results are compared with the Hardy-Littlewood conjecture on the frequency of twin primes. We successfully demonstrated that for large n, the proposed model is superior to the H-L conjecture in predicting the frequency of twin primes.","PeriodicalId":34442,"journal":{"name":"Recoletos Multidisciplinary Research Journal","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recoletos Multidisciplinary Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32871/RMRJ1806.02.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The highly irregular and rough fluctuations of the twin primes below or equal to a positive integer x  are considered in this study. The occurrence of a twin prime on an interval [0,x] is assumed to be random. In particular, we considered the waiting time between arrivals of twin primes as approximated by a geometric distribution which possesses the discrete memory-less property. For large n, the geometric distribution is well-approximated by the exponential distribution. The number of twin primes less or equal to x will then follow the Poisson distribution with the same rate parameter as the exponential distribution. The results are compared with the Hardy-Littlewood conjecture on the frequency of twin primes. We successfully demonstrated that for large n, the proposed model is superior to the H-L conjecture in predicting the frequency of twin primes.
双素数密度的解析近似
本文考虑了小于或等于正整数x的双素数的高度不规则和粗糙的波动。假定双素数在区间[0,x]上的出现是随机的。特别地,我们认为双素数到达之间的等待时间近似为具有离散无记忆性质的几何分布。对于较大的n,几何分布很好地近似于指数分布。小于或等于x的双素数的数量将遵循泊松分布,其速率参数与指数分布相同。结果与Hardy-Littlewood关于孪生素数频率的猜想进行了比较。我们成功地证明了当n较大时,所提出的模型在预测双素数频率方面优于H-L猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信