{"title":"Smart Bio-Polymeric Matrix for Accelerated Wound Healing and Tissue Regeneration","authors":"Dhasmana A, Singh L, M. S.","doi":"10.26420/austinjbiomedeng.2021.1045","DOIUrl":null,"url":null,"abstract":"Traditionally in Chinese medicine, animal sources and their by-products widely used for surgical and healing purposes. Eggshell Membrane (ESM) has been potentially used as grafting material for wound covering and healing due to its fibrous mesh enriched with collagen and glycoproteins. However, the fragile nature of ESM limits applicability for small and superficial wounds. Therefore, acellular matrix/scaffold fabricated from the allogeneic or xenogeneic tissues widely used as grafting material for the repairing and regeneration tissue. Here, we modified an acellular scaffold in different concentrations of ESM protein (ESMP)-5, 7.5 and 10%, and studied synergistic effect for intensifying the tissue healing and regeneration process. Modified Scaffolds (ESMP-AGDS) were evaluated for tissue regeneration by subjecting it through physicochemical and biological characterization i.e., biochemical assay, FTIR, FESEM, in vitro and in vivo analysis. The study revealed proper interaction between the ESMP and acellular matrix 3D interconnected pores structure (57.69±15.65 μm) with good porosity (60.56±9.78%) for better cell and nutrient diffusion. In vitro studies revealed good biodegradability and biocompatibility of modified scaffold with 3T3 mouse fibroblast cells. At the very least concentration of 5% ESMP, acellular matrix showed excellent proliferation and attachment of fibroblast with the progression of time. Similarly, in vivo study showed a full-thickness excisional wound in the albino mice model healed within 14 days along with hair follicles regenerated neo-skin tissue, without any immunogenicity and inflammation. Thus, the study confirmed ESMP and acellular matrix synergistic effect results in a cost-effective, biodegradable, biocompatible smart material potentially applicable for tissue regeneration.","PeriodicalId":90443,"journal":{"name":"Austin journal of biomedical engineering","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austin journal of biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26420/austinjbiomedeng.2021.1045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Traditionally in Chinese medicine, animal sources and their by-products widely used for surgical and healing purposes. Eggshell Membrane (ESM) has been potentially used as grafting material for wound covering and healing due to its fibrous mesh enriched with collagen and glycoproteins. However, the fragile nature of ESM limits applicability for small and superficial wounds. Therefore, acellular matrix/scaffold fabricated from the allogeneic or xenogeneic tissues widely used as grafting material for the repairing and regeneration tissue. Here, we modified an acellular scaffold in different concentrations of ESM protein (ESMP)-5, 7.5 and 10%, and studied synergistic effect for intensifying the tissue healing and regeneration process. Modified Scaffolds (ESMP-AGDS) were evaluated for tissue regeneration by subjecting it through physicochemical and biological characterization i.e., biochemical assay, FTIR, FESEM, in vitro and in vivo analysis. The study revealed proper interaction between the ESMP and acellular matrix 3D interconnected pores structure (57.69±15.65 μm) with good porosity (60.56±9.78%) for better cell and nutrient diffusion. In vitro studies revealed good biodegradability and biocompatibility of modified scaffold with 3T3 mouse fibroblast cells. At the very least concentration of 5% ESMP, acellular matrix showed excellent proliferation and attachment of fibroblast with the progression of time. Similarly, in vivo study showed a full-thickness excisional wound in the albino mice model healed within 14 days along with hair follicles regenerated neo-skin tissue, without any immunogenicity and inflammation. Thus, the study confirmed ESMP and acellular matrix synergistic effect results in a cost-effective, biodegradable, biocompatible smart material potentially applicable for tissue regeneration.