Analysis of pore geometry in the compacted fine aggregate matrix by x-ray microtomography

Rogério F. Costa
{"title":"Analysis of pore geometry in the compacted fine aggregate matrix by x-ray microtomography","authors":"Rogério F. Costa","doi":"10.15392/2319-0612.2022.1862","DOIUrl":null,"url":null,"abstract":"This study employs the advanced X-ray microtomography technique to evaluate the open and closed porosity geometry within fine aggregate matrix specimens extracted from different locations of SGC samples compacted with distinct densities. The adoption of advanced techniques such as the X-ray microtomography facilitate the fabrication of FAMs that are more representative of those that comprise asphalt concretes, as well as allow the use of similar replicates in mechanical tests. In addition, the traditional porosity assessment methods are well documented, but provide only global average results for the entire sample. In this context, X-ray microtomography stands out because, besides porosity information, pore distribution and a series of other parameters related to the internal structure of the object can be evaluated. This study evaluated the geometry of open and closed pores of FAM specimens extracted from different locations of SGC compacted samples. From the results and analyses, it can be concluded that the shape of the closed pores is spherical and the shape of the open pores is cylindrical for the SGC samples compressed with 2.26 g/cm3, 2.34 g/cm3 and 2.44 g/cm3.","PeriodicalId":9203,"journal":{"name":"Brazilian Journal of Radiation Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15392/2319-0612.2022.1862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs the advanced X-ray microtomography technique to evaluate the open and closed porosity geometry within fine aggregate matrix specimens extracted from different locations of SGC samples compacted with distinct densities. The adoption of advanced techniques such as the X-ray microtomography facilitate the fabrication of FAMs that are more representative of those that comprise asphalt concretes, as well as allow the use of similar replicates in mechanical tests. In addition, the traditional porosity assessment methods are well documented, but provide only global average results for the entire sample. In this context, X-ray microtomography stands out because, besides porosity information, pore distribution and a series of other parameters related to the internal structure of the object can be evaluated. This study evaluated the geometry of open and closed pores of FAM specimens extracted from different locations of SGC compacted samples. From the results and analyses, it can be concluded that the shape of the closed pores is spherical and the shape of the open pores is cylindrical for the SGC samples compressed with 2.26 g/cm3, 2.34 g/cm3 and 2.44 g/cm3.
用x射线微层析技术分析致密细聚集体基质中的孔隙几何结构
本研究采用先进的x射线微层析成像技术,对不同密度压实SGC样品不同位置提取的细骨料基质样品的开闭孔隙度几何形状进行了评价。采用x射线显微断层扫描等先进技术有助于制造更能代表构成沥青混凝土的材料的fam,并允许在机械试验中使用类似的复制品。此外,传统的孔隙度评估方法有很好的文献记载,但只能提供整个样品的全球平均结果。在这种情况下,x射线微层析成像脱颖而出,因为除了孔隙度信息外,孔隙分布和一系列与物体内部结构相关的其他参数也可以被评估。本研究评估了从SGC压实样品的不同位置提取的FAM样品的开孔和闭孔的几何形状。分析结果表明,在2.26 g/cm3、2.34 g/cm3和2.44 g/cm3的压缩条件下,SGC样品的封闭孔隙为球形,开放孔隙为圆柱形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信