Quantum invariants of three-manifolds obtained by surgeries along torus knots

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2020-11-11 DOI:10.4171/qt/175
H. Murakami, Anh T. Tran
{"title":"Quantum invariants of three-manifolds obtained by surgeries along torus knots","authors":"H. Murakami, Anh T. Tran","doi":"10.4171/qt/175","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the Witten-Reshetikhin-Turaev invariant associated with the square of the $n$-th root of unity with odd $n$ for a Seifert fibered space obtained by an integral Dehn surgery along a torus knot. We show that it can be described as a sum of the Chern-Simons invariants and the twisted Reidemeister torsions both associated with representations of the fundamental group to the two-dimensional complex special linear group.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"21 6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of the Witten-Reshetikhin-Turaev invariant associated with the square of the $n$-th root of unity with odd $n$ for a Seifert fibered space obtained by an integral Dehn surgery along a torus knot. We show that it can be described as a sum of the Chern-Simons invariants and the twisted Reidemeister torsions both associated with representations of the fundamental group to the two-dimensional complex special linear group.
三流形沿环面结整形的量子不变量
研究了沿环面结用积分Dehn手术得到的Seifert纤维空间的Witten-Reshetikhin-Turaev不变量的渐近性,该不变量与n$-奇数n$的单位根的平方有关。我们证明了它可以被描述为与基本群到二维复特殊线性群的表示相关的chen - simons不变量和扭曲的Reidemeister扭转的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信