Computational fluid dynamics study for the optimization of surface temperature profile of photovoltaic/thermal system

A. A. Baloch, H. Bahaidarah, P. Gandhidasan
{"title":"Computational fluid dynamics study for the optimization of surface temperature profile of photovoltaic/thermal system","authors":"A. A. Baloch, H. Bahaidarah, P. Gandhidasan","doi":"10.1109/PVSC.2016.7749727","DOIUrl":null,"url":null,"abstract":"Computational Fluid Dynamics (CFD) study to obtain uniform thermal characteristics on the front surface of solar cell module has been studied. The performance of PV panels significantly reduces with high temperature of solar cell and low temperature uniformity. For the optimization process, photovoltaic-thermal (PV/T) system has been analyzed in this paper for the meteorogical conditions of Dhahran. The effect of reducing heat exchanger's cross section area by changing the bas angle on the temperature profile has been studied using FLUENT software. Based on the CFD simulations of temperature profile, two degree angle was selected for the heat exchanger in PV/T system because of least mean temperature deviation. The temperature distribution for cooled PV showed an approximate uniform temperature profile and was able to reduce the cell temperature from 71°C to 45.2°C for the operating conditions in Dhahran in the month of June. From the electrical point of view, maximum energy yield increased from 11.9 W to 16.2W using the proposed uniform temperature heat exchanger.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7749727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computational Fluid Dynamics (CFD) study to obtain uniform thermal characteristics on the front surface of solar cell module has been studied. The performance of PV panels significantly reduces with high temperature of solar cell and low temperature uniformity. For the optimization process, photovoltaic-thermal (PV/T) system has been analyzed in this paper for the meteorogical conditions of Dhahran. The effect of reducing heat exchanger's cross section area by changing the bas angle on the temperature profile has been studied using FLUENT software. Based on the CFD simulations of temperature profile, two degree angle was selected for the heat exchanger in PV/T system because of least mean temperature deviation. The temperature distribution for cooled PV showed an approximate uniform temperature profile and was able to reduce the cell temperature from 71°C to 45.2°C for the operating conditions in Dhahran in the month of June. From the electrical point of view, maximum energy yield increased from 11.9 W to 16.2W using the proposed uniform temperature heat exchanger.
光伏/热系统表面温度分布优化的计算流体动力学研究
采用计算流体力学(CFD)方法对太阳能电池组件前表面的均匀热特性进行了研究。太阳能电池温度高,温度均匀性低,光伏板的性能显著降低。本文针对达兰地区的气象条件,对光伏-热(PV/T)系统进行了优化分析。利用FLUENT软件研究了通过改变换热角来减小换热器截面面积对温度分布的影响。基于温度分布的CFD模拟,考虑到PV/T系统的平均温度偏差最小,换热器选择2度角。冷却PV的温度分布显示出近似均匀的温度分布,并且能够将电池温度从71°C降低到45.2°C,以满足6月份在Dhahran的运行条件。从电气角度来看,采用所提出的均匀温度换热器,最大发电量从11.9 W增加到16.2W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信