{"title":"Redesign for untrusted gate-level netlists","authors":"Masaru Oya, M. Yanagisawa, N. Togawa","doi":"10.1109/IOLTS.2016.7604706","DOIUrl":null,"url":null,"abstract":"This paper proposes a redesign technique which designs from untrusted netlists to trusted netlists. Our approach consists of two phases, detection phase and invalidation phase. The detection phase picks up suspicious hardware Trojans (HTs) by pattern matching. The invalidation phase modifies the suspicious HTs in order not to activate them. In the invalidation phase, three invalidation techniques are selected by analyzing location of suspicious malicious nets. Applying appropriately the invalidation technique to the nets can correctly invalidate HTs. In our results, the proposed technique can successfully invalidate HTs on several Trust-HUB benchmarks without HT activations. The results clearly demonstrate that our redesign technique is very effective to remove HT risks.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"72 1","pages":"219-220"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a redesign technique which designs from untrusted netlists to trusted netlists. Our approach consists of two phases, detection phase and invalidation phase. The detection phase picks up suspicious hardware Trojans (HTs) by pattern matching. The invalidation phase modifies the suspicious HTs in order not to activate them. In the invalidation phase, three invalidation techniques are selected by analyzing location of suspicious malicious nets. Applying appropriately the invalidation technique to the nets can correctly invalidate HTs. In our results, the proposed technique can successfully invalidate HTs on several Trust-HUB benchmarks without HT activations. The results clearly demonstrate that our redesign technique is very effective to remove HT risks.