DFT Study on Na-Ion Conducting Solid Biopolymer Electrolyte-Based on Agar-Agar and NaPF6 for Sodium-Ion Batteries

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
P. Gupta, Abhishek Gupta, S. K. Gupta, Shivani Gupta, Mayank Shriwastav, R. Yadav
{"title":"DFT Study on Na-Ion Conducting Solid Biopolymer Electrolyte-Based on Agar-Agar and NaPF6 for Sodium-Ion Batteries","authors":"P. Gupta, Abhishek Gupta, S. K. Gupta, Shivani Gupta, Mayank Shriwastav, R. Yadav","doi":"10.4028/p-RZ9JFl","DOIUrl":null,"url":null,"abstract":"This research article is focused on the structural, electronic, thermal, and vibrational properties of solid biopolymer electrolytes based on Agar-Agar and sodium hexafluorophosphate (NaPF6) salt. Herein, the density functional theory (DFT) technique is used to investigate these properties. The structural analysis provides information about the interactions between Agar-Agar and NaPF6 and hence interaction energy is analysed. Thermodynamic parameters such as Gibbs’ free energy (G), enthalpy (H), entropy (S), and specific heat (Cv) etc. are studied by frequency analysis at normal temperature pressure (NTP) of titled electrolytes. The chemical descriptors of the electrolytes have been studied using the molecular orbital theory (MOT). Molecular electrostatic potential surface (MEPS) demonstrates the three-dimensional molecular charge distribution and illustrates the electron-rich and deficit regions over the whole electrolyte system. Mulliken population analysis (MPA) gives the identification of intramolecular hydrogen bonding. The theoretical infrared (IR) study confirms the formation of the complex system between Agar-Agar and NaPF6 salt. The overall DFT studies of sodium ion-based biopolymer electrolytes have better possibilities for safe sodium-ion batteries.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"19 1","pages":"65 - 78"},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-RZ9JFl","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This research article is focused on the structural, electronic, thermal, and vibrational properties of solid biopolymer electrolytes based on Agar-Agar and sodium hexafluorophosphate (NaPF6) salt. Herein, the density functional theory (DFT) technique is used to investigate these properties. The structural analysis provides information about the interactions between Agar-Agar and NaPF6 and hence interaction energy is analysed. Thermodynamic parameters such as Gibbs’ free energy (G), enthalpy (H), entropy (S), and specific heat (Cv) etc. are studied by frequency analysis at normal temperature pressure (NTP) of titled electrolytes. The chemical descriptors of the electrolytes have been studied using the molecular orbital theory (MOT). Molecular electrostatic potential surface (MEPS) demonstrates the three-dimensional molecular charge distribution and illustrates the electron-rich and deficit regions over the whole electrolyte system. Mulliken population analysis (MPA) gives the identification of intramolecular hydrogen bonding. The theoretical infrared (IR) study confirms the formation of the complex system between Agar-Agar and NaPF6 salt. The overall DFT studies of sodium ion-based biopolymer electrolytes have better possibilities for safe sodium-ion batteries.
钠离子电池用基于琼脂和NaPF6的na离子导电固体生物聚合物电解质的DFT研究
本文主要研究了以琼脂和六氟磷酸钠(NaPF6)盐为基础的固体生物聚合物电解质的结构、电子、热学和振动性能。本文利用密度泛函理论(DFT)技术研究了这些性质。结构分析提供了琼脂和NaPF6之间相互作用的信息,从而分析了相互作用能。通过频率分析,研究了常温下电解质的吉布斯自由能(G)、焓(H)、熵(S)、比热(Cv)等热力学参数。用分子轨道理论(MOT)研究了电解质的化学描述符。分子静电势面(MEPS)显示了分子的三维电荷分布,并显示了整个电解质体系的富电子区和亏电子区。Mulliken种群分析(MPA)给出了分子内氢键的识别方法。理论红外(IR)研究证实了琼脂与NaPF6盐之间形成的复合体系。钠离子基生物聚合物电解质的整体DFT研究为钠离子电池的安全性提供了更好的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信