Li Zuo , Mohammad Akter Hossain , Bishal Pokhrel , Wei-Shun Chang , Hao Shen
{"title":"Catalysis driven by biohybrid nanozyme","authors":"Li Zuo , Mohammad Akter Hossain , Bishal Pokhrel , Wei-Shun Chang , Hao Shen","doi":"10.1016/j.asems.2022.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Nanozymes, a class of nanomaterials that exhibit enzyme-like characteristics in catalysis, have been booming over decades. They feature unique properties, such as low cost, high chemical stability, easy storage, and highly tunable reactivity. Nanozymes with biomolecule modifications received the most attention because of their high biocompatibility and better natural enzyme-mimicking. With their unique physicochemical properties, these biomolecule nanohybrids have been used in a variety of applications. Hence, we highlight the current progress for “biohybrid nanozymes” in this review. The synthesis, composition, and catalytic performances of different biohybrid nanozymes are discussed. We expect that biohybrid nanozymes will attract broad interest in fundamental research and practical applications.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"1 3","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X22000243/pdfft?md5=1c465c71270bc39928f846b6fdc04ec2&pid=1-s2.0-S2773045X22000243-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X22000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Nanozymes, a class of nanomaterials that exhibit enzyme-like characteristics in catalysis, have been booming over decades. They feature unique properties, such as low cost, high chemical stability, easy storage, and highly tunable reactivity. Nanozymes with biomolecule modifications received the most attention because of their high biocompatibility and better natural enzyme-mimicking. With their unique physicochemical properties, these biomolecule nanohybrids have been used in a variety of applications. Hence, we highlight the current progress for “biohybrid nanozymes” in this review. The synthesis, composition, and catalytic performances of different biohybrid nanozymes are discussed. We expect that biohybrid nanozymes will attract broad interest in fundamental research and practical applications.