{"title":"Transient wall temperature measurements of two-phase slug flow in a microchannel","authors":"Farzad Houshmand, Y. Peles","doi":"10.1109/ITHERM.2014.6892419","DOIUrl":null,"url":null,"abstract":"A High frequency wall temperature measurement approach at the microscale is demonstrated. This experimental approach was implemented to study the transient effect of bubbles in a slug flow regime. Air stream was injected into liquid water flow in a 210 μm deep and 1.5 mm wide horizontal microchannel to form a slug flow regime (with bubble frequency of ~280 Hz) and the associated wall temperature variations were recorded using the embedded resistance temperature detectors (RTDs) inside the channel-on the heater area. Synchronized images of the two-phase flow were simultaneously recorded by a high speed camera, and the recorded footage was used to interpret the observed trends. Three different regions with different heat transfer characteristics were identified for each cycle of bubble/liquid-slug passage.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"77 1","pages":"1215-1221"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A High frequency wall temperature measurement approach at the microscale is demonstrated. This experimental approach was implemented to study the transient effect of bubbles in a slug flow regime. Air stream was injected into liquid water flow in a 210 μm deep and 1.5 mm wide horizontal microchannel to form a slug flow regime (with bubble frequency of ~280 Hz) and the associated wall temperature variations were recorded using the embedded resistance temperature detectors (RTDs) inside the channel-on the heater area. Synchronized images of the two-phase flow were simultaneously recorded by a high speed camera, and the recorded footage was used to interpret the observed trends. Three different regions with different heat transfer characteristics were identified for each cycle of bubble/liquid-slug passage.