{"title":"Approach to the Flow Rate Distribution of Coronary Branches in the Calculation of Fractional Flow Reserve","authors":"A. Qiao, Honghui Zhang, Jun Xia","doi":"10.32604/MCB.2019.05715","DOIUrl":null,"url":null,"abstract":"In order to improve the calculation accuracy of computed tomography angiography-derived fractional flow reserve (FFRCT), a mathematical model for setting the patient-specific flow boundary condition was proposed, in which some independent physiological parameters, such as myocardial mass, diastolic blood pressure, heart rate and vessel volume were considered. This model was employed to simulate hemodynamics in sixteen patients with coronary stenosis. The results of FFRCT demonstrated good consistency with invasively measured FFR. The diagnostic accuracy of FFRCT was 85%. The proposed model offers a new approach to improve the accuracy of FFRCT, as well as promotes the clinical application of FFRCT.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2
Abstract
In order to improve the calculation accuracy of computed tomography angiography-derived fractional flow reserve (FFRCT), a mathematical model for setting the patient-specific flow boundary condition was proposed, in which some independent physiological parameters, such as myocardial mass, diastolic blood pressure, heart rate and vessel volume were considered. This model was employed to simulate hemodynamics in sixteen patients with coronary stenosis. The results of FFRCT demonstrated good consistency with invasively measured FFR. The diagnostic accuracy of FFRCT was 85%. The proposed model offers a new approach to improve the accuracy of FFRCT, as well as promotes the clinical application of FFRCT.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.