{"title":"Dynamos in the Inner Solar System","authors":"S. Tikoo, A. Evans","doi":"10.1146/annurev-earth-032320-102418","DOIUrl":null,"url":null,"abstract":"Dynamo magnetic fields are primarily generated by thermochemical convection of electrically conductive liquid metal within planetary cores. Convection can be sustained by secular cooling and may be bolstered by compositional buoyancy associated with core solidification. Additionally, mechanical stirring of core fluids and external perturbations by large impact events, tidal effects, and orbital precession can also contribute to sustaining dynamo fields. Convective dynamos cease when the core-mantle heat flux becomes subadiabatic or if specific crystallization regimes inhibit core fluid flows. Therefore, exploring the histories of magnetic fields across the Solar System provides a window into the thermal and chemical evolution of planetary interiors. Here we review how recent spacecraft-based studies of remanent crustal magnetism, paleomagnetic studies of rock samples, and planetary interior models have revealed the magnetic and evolutionary histories of Mercury, Earth, Mars, the Moon, and several planetesimals, as well as discuss avenues for future exploration and discovery. ▪ Paleomagnetism and remanent crustal magnetism studies elucidate the magnetic histories of rocky planetary bodies. ▪ Records of ancient dynamo fields have been obtained from 3 out of 4 terrestrial planets, the Moon, and several planetesimals. ▪ The geometries, intensities, and longevities of dynamo fields can provide information on core processes and planetary thermal evolution. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"83 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-102418","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5
Abstract
Dynamo magnetic fields are primarily generated by thermochemical convection of electrically conductive liquid metal within planetary cores. Convection can be sustained by secular cooling and may be bolstered by compositional buoyancy associated with core solidification. Additionally, mechanical stirring of core fluids and external perturbations by large impact events, tidal effects, and orbital precession can also contribute to sustaining dynamo fields. Convective dynamos cease when the core-mantle heat flux becomes subadiabatic or if specific crystallization regimes inhibit core fluid flows. Therefore, exploring the histories of magnetic fields across the Solar System provides a window into the thermal and chemical evolution of planetary interiors. Here we review how recent spacecraft-based studies of remanent crustal magnetism, paleomagnetic studies of rock samples, and planetary interior models have revealed the magnetic and evolutionary histories of Mercury, Earth, Mars, the Moon, and several planetesimals, as well as discuss avenues for future exploration and discovery. ▪ Paleomagnetism and remanent crustal magnetism studies elucidate the magnetic histories of rocky planetary bodies. ▪ Records of ancient dynamo fields have been obtained from 3 out of 4 terrestrial planets, the Moon, and several planetesimals. ▪ The geometries, intensities, and longevities of dynamo fields can provide information on core processes and planetary thermal evolution. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.