Patterns without a popular difference

A. Sah, Mehtaab Sawhney, Yufei Zhao
{"title":"Patterns without a popular difference","authors":"A. Sah, Mehtaab Sawhney, Yufei Zhao","doi":"10.19086/da.25317","DOIUrl":null,"url":null,"abstract":"Which finite sets $P \\subseteq \\mathbb{Z}^r$ with $|P| \\ge 3$ have the following property: for every $A \\subseteq [N]^r$, there is some nonzero integer $d$ such that $A$ contains $(\\alpha^{|P|} - o(1))N^r$ translates of $d \\cdot P = \\{d p : p \\in P\\}$, where $\\alpha = |A|/N^r$? \nGreen showed that all 3-point $P \\subseteq \\mathbb{Z}$ have the above property. Green and Tao showed that 4-point sets of the form $P = \\{a, a+b, a+c, a+b+c\\} \\subseteq \\mathbb{Z}$ also have the property. We show that no other sets have the above property. Furthermore, for various $P$, we provide new upper bounds on the number of translates of $d \\cdot P$ that one can guarantee to find.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.25317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Which finite sets $P \subseteq \mathbb{Z}^r$ with $|P| \ge 3$ have the following property: for every $A \subseteq [N]^r$, there is some nonzero integer $d$ such that $A$ contains $(\alpha^{|P|} - o(1))N^r$ translates of $d \cdot P = \{d p : p \in P\}$, where $\alpha = |A|/N^r$? Green showed that all 3-point $P \subseteq \mathbb{Z}$ have the above property. Green and Tao showed that 4-point sets of the form $P = \{a, a+b, a+c, a+b+c\} \subseteq \mathbb{Z}$ also have the property. We show that no other sets have the above property. Furthermore, for various $P$, we provide new upper bounds on the number of translates of $d \cdot P$ that one can guarantee to find.
没有流行差异的模式
哪些有限集$P \subseteq \mathbb{Z}^r$与$|P| \ge 3$具有以下属性:对于每个$A \subseteq [N]^r$,存在一些非零整数$d$,使得$A$包含$d \cdot P = \{d p : p \in P\}$的$(\alpha^{|P|} - o(1))N^r$转换,其中$\alpha = |A|/N^r$ ?Green证明了所有的三分球$P \subseteq \mathbb{Z}$都具有上述性质。Green和Tao证明了形式为$P = \{a, a+b, a+c, a+b+c\} \subseteq \mathbb{Z}$的4点集也具有这个性质。我们证明没有其他集合具有上述性质。此外,对于各种$P$,我们提供了可以保证找到的$d \cdot P$的翻译次数的新上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信