{"title":"An economic approach to energy budgets: HOW many resources should living organisms spare?","authors":"Arturo Tozzi","doi":"10.20944/preprints202110.0234.v1","DOIUrl":null,"url":null,"abstract":"Ramsey's economic theory of saving (RTS) estimates how much of its commodities a nation should save to safeguard the well-being of future generations. Since RTS retains many attractive qualities such as simplicity, strength, breadth and generality, here we ask if it would be useful to investigate biophysical issues. Specifically, we focus on a biological topic that lends itself as a backdrop for the study of the imbalance between intake and expenditure, i.e., the evaluation of the multicellular living organisms' energetic requirements and constraints. Our problem is to find at each time the optimum distribution and the right balance of the cellular energy budget between consumption and storage: how much must a living organism spare to increase its chances of survival over long periods? To give an operational example, we discuss the ATP requirements in the central nervous system during the spontaneous and the evoked activity of the brain, showing that the experimentally detected values of energetic expenditure during neural computations match well with the estimations provided by RTS. Suggesting how to find the optimum allocation of the available energy between expenditure and saving at each time, RTS approaches to biological energy budgets may have a wide range of experimental applications, such as: a) optimization of the long-term survival chances of either immortalized cell cultures, or beneficial bacterial colonies and exogenous probiotic mixtures; b) eradication of detrimental biofilms, such as, e.g., heart valves' Streptococcus colonies; c) novel anti-stress and anti-ageing strategies.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202110.0234.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Ramsey's economic theory of saving (RTS) estimates how much of its commodities a nation should save to safeguard the well-being of future generations. Since RTS retains many attractive qualities such as simplicity, strength, breadth and generality, here we ask if it would be useful to investigate biophysical issues. Specifically, we focus on a biological topic that lends itself as a backdrop for the study of the imbalance between intake and expenditure, i.e., the evaluation of the multicellular living organisms' energetic requirements and constraints. Our problem is to find at each time the optimum distribution and the right balance of the cellular energy budget between consumption and storage: how much must a living organism spare to increase its chances of survival over long periods? To give an operational example, we discuss the ATP requirements in the central nervous system during the spontaneous and the evoked activity of the brain, showing that the experimentally detected values of energetic expenditure during neural computations match well with the estimations provided by RTS. Suggesting how to find the optimum allocation of the available energy between expenditure and saving at each time, RTS approaches to biological energy budgets may have a wide range of experimental applications, such as: a) optimization of the long-term survival chances of either immortalized cell cultures, or beneficial bacterial colonies and exogenous probiotic mixtures; b) eradication of detrimental biofilms, such as, e.g., heart valves' Streptococcus colonies; c) novel anti-stress and anti-ageing strategies.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.