An economic approach to energy budgets: HOW many resources should living organisms spare?

IF 1.2 Q3 Computer Science
Arturo Tozzi
{"title":"An economic approach to energy budgets: HOW many resources should living organisms spare?","authors":"Arturo Tozzi","doi":"10.20944/preprints202110.0234.v1","DOIUrl":null,"url":null,"abstract":"Ramsey's economic theory of saving (RTS) estimates how much of its commodities a nation should save to safeguard the well-being of future generations. Since RTS retains many attractive qualities such as simplicity, strength, breadth and generality, here we ask if it would be useful to investigate biophysical issues. Specifically, we focus on a biological topic that lends itself as a backdrop for the study of the imbalance between intake and expenditure, i.e., the evaluation of the multicellular living organisms' energetic requirements and constraints. Our problem is to find at each time the optimum distribution and the right balance of the cellular energy budget between consumption and storage: how much must a living organism spare to increase its chances of survival over long periods? To give an operational example, we discuss the ATP requirements in the central nervous system during the spontaneous and the evoked activity of the brain, showing that the experimentally detected values of energetic expenditure during neural computations match well with the estimations provided by RTS. Suggesting how to find the optimum allocation of the available energy between expenditure and saving at each time, RTS approaches to biological energy budgets may have a wide range of experimental applications, such as: a) optimization of the long-term survival chances of either immortalized cell cultures, or beneficial bacterial colonies and exogenous probiotic mixtures; b) eradication of detrimental biofilms, such as, e.g., heart valves' Streptococcus colonies; c) novel anti-stress and anti-ageing strategies.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202110.0234.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Ramsey's economic theory of saving (RTS) estimates how much of its commodities a nation should save to safeguard the well-being of future generations. Since RTS retains many attractive qualities such as simplicity, strength, breadth and generality, here we ask if it would be useful to investigate biophysical issues. Specifically, we focus on a biological topic that lends itself as a backdrop for the study of the imbalance between intake and expenditure, i.e., the evaluation of the multicellular living organisms' energetic requirements and constraints. Our problem is to find at each time the optimum distribution and the right balance of the cellular energy budget between consumption and storage: how much must a living organism spare to increase its chances of survival over long periods? To give an operational example, we discuss the ATP requirements in the central nervous system during the spontaneous and the evoked activity of the brain, showing that the experimentally detected values of energetic expenditure during neural computations match well with the estimations provided by RTS. Suggesting how to find the optimum allocation of the available energy between expenditure and saving at each time, RTS approaches to biological energy budgets may have a wide range of experimental applications, such as: a) optimization of the long-term survival chances of either immortalized cell cultures, or beneficial bacterial colonies and exogenous probiotic mixtures; b) eradication of detrimental biofilms, such as, e.g., heart valves' Streptococcus colonies; c) novel anti-stress and anti-ageing strategies.
能源预算的经济方法:生物体应该节省多少资源?
拉姆齐的储蓄经济理论(RTS)估计了一个国家应该储蓄多少商品来保障子孙后代的福祉。由于RTS保留了许多吸引人的品质,如简单性、强度、广度和普遍性,我们在此询问它是否对研究生物物理问题有用。具体来说,我们关注的是一个生物学主题,它可以作为研究摄入和消耗之间不平衡的背景,即对多细胞生物能量需求和限制的评估。我们的问题是每次都要找到细胞能量收支在消耗和储存之间的最佳分配和适当平衡:生物体必须节省多少才能增加长期生存的机会?为了给出一个可操作的例子,我们讨论了大脑自发活动和激发活动期间中枢神经系统对ATP的需求,结果表明,神经计算过程中实验检测到的能量消耗值与RTS提供的估计吻合得很好。提示如何在每次消耗和节省之间找到可用能量的最佳分配,RTS生物能量预算方法可能具有广泛的实验应用,例如:a)优化永生化细胞培养物或有益菌落和外源益生菌混合物的长期生存机会;b)根除有害的生物膜,例如,心脏瓣膜的链球菌菌落;C)新的抗压力和抗衰老策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bio-Algorithms and Med-Systems
Bio-Algorithms and Med-Systems MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
3
期刊介绍: The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信