{"title":"Geological and Geophysical Studies of Sulfide Copper Mineralization in the Dochileh Area: An Example of Manto‐Type Deposit in the Sabzevar Zone, Iran","authors":"Susan Ebrahimi, A. Arab-Amiri, A. Kamkar-Rouhani","doi":"10.1111/rge.12222","DOIUrl":null,"url":null,"abstract":"The Dochileh stratiform copper deposit in the Sabzevar Zone of northeastern Iran is hosted in the basaltic sequence of the Upper Eocene age. The host rock displays two hydrothermal events: zeolite–carbonate alteration that is a stratigraphic–lithologic feature and chlorite and chlorite/ferruginous alterations in the local mineralized structures. Ore formation is related to both hydrothermal events and occurs in both stratiform and vein mineralization types. Mineralization consists of main chalcocite with variable amounts of bornite, chalcopyrite, native copper, malachite, and cuprite minerals, which occur as hydrothermal breccias, and disseminated, vein, and veinlet forms. Geophysical field studies using resistivity and induction polarization (IP) methods were conducted along nine survey lines in the area. As a result of modeling and interpretation of the acquired geophysical data, high values of IP and resistivity corresponding to mineralization were observed at two depth levels: 0–20 m and more than 40 m. Based on these geological and geophysical investigations, six locations for drilling exploration boreholes were proposed. Drilling data confirmed the mineralization containing high copper values in the two depth levels: the vein‐type mineralization in the surface and shallow depth level, and the stratiform mineralization at the deeper level. Fluid inclusion studies in calcite and quartz from stratiform‐ and vein‐type mineralization show the evidence of mixing, and a linear dilution trend during the ore formation occurred at a wide range of temperatures: 121–308°C and 80–284°C, respectively, and varying salinities of between 3.2–16.8 and 0.8–22 wt% NaCl equivalents. The stable isotope composition of δ34S that falls in a range of −2.4 to +25.0‰ could be considered biogenetic sulfur from bacterial sulfate reduction and leaching of sulfur from hosting basalt. The δ13C values of calcite vary between −0.6 and −7.6‰, suggesting a major contribution of marine carbonates associated with igneous carbonates, and the δ18OSMOW values of calcite are between +15.2 and +19.9‰, suggesting a contribution of δ18O‐rich sedimentary rocks and δ18O‐poor meteoric water. Copper and sulfide‐rich hydrothermal fluid have flowed upward through the local faults and permeable interbeds within the Eocene volcanic sequence and have formed the mineralized veins and horizons. The geophysical results have detected the local faults as the channel ways for mineralization.","PeriodicalId":21089,"journal":{"name":"Resource Geology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resource Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/rge.12222","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The Dochileh stratiform copper deposit in the Sabzevar Zone of northeastern Iran is hosted in the basaltic sequence of the Upper Eocene age. The host rock displays two hydrothermal events: zeolite–carbonate alteration that is a stratigraphic–lithologic feature and chlorite and chlorite/ferruginous alterations in the local mineralized structures. Ore formation is related to both hydrothermal events and occurs in both stratiform and vein mineralization types. Mineralization consists of main chalcocite with variable amounts of bornite, chalcopyrite, native copper, malachite, and cuprite minerals, which occur as hydrothermal breccias, and disseminated, vein, and veinlet forms. Geophysical field studies using resistivity and induction polarization (IP) methods were conducted along nine survey lines in the area. As a result of modeling and interpretation of the acquired geophysical data, high values of IP and resistivity corresponding to mineralization were observed at two depth levels: 0–20 m and more than 40 m. Based on these geological and geophysical investigations, six locations for drilling exploration boreholes were proposed. Drilling data confirmed the mineralization containing high copper values in the two depth levels: the vein‐type mineralization in the surface and shallow depth level, and the stratiform mineralization at the deeper level. Fluid inclusion studies in calcite and quartz from stratiform‐ and vein‐type mineralization show the evidence of mixing, and a linear dilution trend during the ore formation occurred at a wide range of temperatures: 121–308°C and 80–284°C, respectively, and varying salinities of between 3.2–16.8 and 0.8–22 wt% NaCl equivalents. The stable isotope composition of δ34S that falls in a range of −2.4 to +25.0‰ could be considered biogenetic sulfur from bacterial sulfate reduction and leaching of sulfur from hosting basalt. The δ13C values of calcite vary between −0.6 and −7.6‰, suggesting a major contribution of marine carbonates associated with igneous carbonates, and the δ18OSMOW values of calcite are between +15.2 and +19.9‰, suggesting a contribution of δ18O‐rich sedimentary rocks and δ18O‐poor meteoric water. Copper and sulfide‐rich hydrothermal fluid have flowed upward through the local faults and permeable interbeds within the Eocene volcanic sequence and have formed the mineralized veins and horizons. The geophysical results have detected the local faults as the channel ways for mineralization.
期刊介绍:
Resource Geology is an international journal focusing on economic geology, geochemistry and environmental geology. Its purpose is to contribute to the promotion of earth sciences related to metallic and non-metallic mineral deposits mainly in Asia, Oceania and the Circum-Pacific region, although other parts of the world are also considered.
Launched in 1998 by the Society for Resource Geology, the journal is published quarterly in English, making it more accessible to the international geological community. The journal publishes high quality papers of interest to those engaged in research and exploration of mineral deposits.