Silver Nanoparticles: Synthesis, Characterization and Applications

N. Chouhan
{"title":"Silver Nanoparticles: Synthesis, Characterization and Applications","authors":"N. Chouhan","doi":"10.5772/INTECHOPEN.75611","DOIUrl":null,"url":null,"abstract":"Day by day augmenting importance of metal nanoparticles in the versatile fields like, catalyst, electronic, magnetic, mechanic, optical optoelectronic, materials for solar cell and fuel cell, medical, bioimaging, cosmetic, ultrafast data communication and optical data storage, etc, is increasing their value. Nanoparticles of alkali metals and noble metals (copper, silver, platinum, palladium, and gold, etc.) have a broad absorption band in the visible region of the electromagnetic spectrum of light, because the solutions of these metal nanoparticles show the intense color, which is absent in their bulk counterparts as well as their atomic level. The main cause behind this phenomenon is attributed to the collective oscillations of the free conductive electrons that are induced by an interaction with electromagnetic field. The whole incidence is known as localized surface plasmonic resonance. Out of these, we have selected the silver nanoparticles for the studies. In this article, we will discuss the synthesis, characterization, and application of the silver nanoparticles. Future prospective and challenges in the field commercialization of the nanosilver is also discussed.","PeriodicalId":21773,"journal":{"name":"Silver Nanoparticles - Fabrication, Characterization and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silver Nanoparticles - Fabrication, Characterization and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Day by day augmenting importance of metal nanoparticles in the versatile fields like, catalyst, electronic, magnetic, mechanic, optical optoelectronic, materials for solar cell and fuel cell, medical, bioimaging, cosmetic, ultrafast data communication and optical data storage, etc, is increasing their value. Nanoparticles of alkali metals and noble metals (copper, silver, platinum, palladium, and gold, etc.) have a broad absorption band in the visible region of the electromagnetic spectrum of light, because the solutions of these metal nanoparticles show the intense color, which is absent in their bulk counterparts as well as their atomic level. The main cause behind this phenomenon is attributed to the collective oscillations of the free conductive electrons that are induced by an interaction with electromagnetic field. The whole incidence is known as localized surface plasmonic resonance. Out of these, we have selected the silver nanoparticles for the studies. In this article, we will discuss the synthesis, characterization, and application of the silver nanoparticles. Future prospective and challenges in the field commercialization of the nanosilver is also discussed.
纳米银:合成、表征及应用
金属纳米颗粒在催化剂、电子、磁性、机械、光学光电、太阳能电池和燃料电池材料、医学、生物成像、化妆品、超快数据通信和光数据存储等多用途领域的重要性日益增强,其价值也在不断提高。碱金属和贵金属(铜、银、铂、钯和金等)的纳米粒子在电磁光谱的可见区域有很宽的吸收带,因为这些金属纳米粒子的溶液显示出强烈的颜色,这在它们的体积对应物和原子水平上是不存在的。这一现象背后的主要原因归因于自由导电电子的集体振荡,这些振荡是由电磁场相互作用引起的。整个过程称为局部表面等离子体共振。从中,我们选择了银纳米粒子进行研究。本文将讨论纳米银的合成、表征及其应用。最后讨论了纳米银的应用前景和面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信