{"title":"Defect Detection on 3D Print Products and in Concrete Structures Using Image Processing and Convolution Neural Network","authors":"Selorm Garfo, M. Muktadir, Sun Yi","doi":"10.3844/JMRSP.2020.74.84","DOIUrl":null,"url":null,"abstract":"This paper explores the automated detection of surface defects on 3-D printed products and concrete structures. They are the main factors to evaluate their quality in addition to dimension and roughness. Traditional detection by human inspectors is far from satisfactory. Manual inspection is time-consuming, error-prone and often leads to loss of resources. For this purpose, image processing and deep learning-based object detection adopted by Google Cloud Machine Learning (ML) Engine is used to detect surface defects. In the case of image processing, two approaches are presented in this paper. In both cases, pixels are being considered to differentiate a smooth or rough surface from a picture taken by a USB camera. For the deep learning- based solution, MobileNet -a base convolution neural network treated as an image feature extractor in combination with Single Shot MultiBox Detector (SSD) as an object detector hence MobileNet-SSD. The model was successfully trained on the Google Cloud ML Engine with the dataset of 20000+ images. The review of the results confirms that with the help of MobileNet-SSD can automatically detect surface defects more accurately and rapidly than conventional deep learning methods.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"39 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMRSP.2020.74.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 16
Abstract
This paper explores the automated detection of surface defects on 3-D printed products and concrete structures. They are the main factors to evaluate their quality in addition to dimension and roughness. Traditional detection by human inspectors is far from satisfactory. Manual inspection is time-consuming, error-prone and often leads to loss of resources. For this purpose, image processing and deep learning-based object detection adopted by Google Cloud Machine Learning (ML) Engine is used to detect surface defects. In the case of image processing, two approaches are presented in this paper. In both cases, pixels are being considered to differentiate a smooth or rough surface from a picture taken by a USB camera. For the deep learning- based solution, MobileNet -a base convolution neural network treated as an image feature extractor in combination with Single Shot MultiBox Detector (SSD) as an object detector hence MobileNet-SSD. The model was successfully trained on the Google Cloud ML Engine with the dataset of 20000+ images. The review of the results confirms that with the help of MobileNet-SSD can automatically detect surface defects more accurately and rapidly than conventional deep learning methods.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.