Quantum many-body attractors

B. Buča, Archak Purkayastha, G. Guarnieri, M. Mitchison, D. Jaksch, J. Goold
{"title":"Quantum many-body attractors","authors":"B. Buča, Archak Purkayastha, G. Guarnieri, M. Mitchison, D. Jaksch, J. Goold","doi":"10.21203/RS.3.RS-106008/V1","DOIUrl":null,"url":null,"abstract":"\n Real-world complex systems often show robust, persistent oscillatory dynamics, e.g.~non-trivial attractors. On the quantum level this behaviour has only been found in semi-classical or weakly correlated systems under restrictive assumptions. However, strongly interacting systems without classical limits, e.g.~electrons on a lattice or spins, typically relax quickly to a stationary state (trivial attractors). This raises the puzzling question of how non-trivial attractors can arise from the quantum laws. Here, we introduce strictly local dynamical symmetries that lead to extremely robust and persistent oscillations in quantum many-body systems without a classical limit. Observables that do not have overlap with the symmetry operators can relax, losing memory of their initial conditions. The remaining observables enter complex dynamical cycles, signalling the emergence of a quantum many-body attractor. We provide a recipe for constructing Hamiltonians featuring local dynamical symmetries. As an example, we introduce the spin lace – a model of a quasi-1D quantum magnet.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-106008/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Real-world complex systems often show robust, persistent oscillatory dynamics, e.g.~non-trivial attractors. On the quantum level this behaviour has only been found in semi-classical or weakly correlated systems under restrictive assumptions. However, strongly interacting systems without classical limits, e.g.~electrons on a lattice or spins, typically relax quickly to a stationary state (trivial attractors). This raises the puzzling question of how non-trivial attractors can arise from the quantum laws. Here, we introduce strictly local dynamical symmetries that lead to extremely robust and persistent oscillations in quantum many-body systems without a classical limit. Observables that do not have overlap with the symmetry operators can relax, losing memory of their initial conditions. The remaining observables enter complex dynamical cycles, signalling the emergence of a quantum many-body attractor. We provide a recipe for constructing Hamiltonians featuring local dynamical symmetries. As an example, we introduce the spin lace – a model of a quasi-1D quantum magnet.
量子多体吸引子
现实世界的复杂系统经常表现出鲁棒、持久的振荡动力学,例如~非平凡吸引子。在量子水平上,这种行为只在限制性假设下的半经典或弱相关系统中被发现。然而,没有经典限制的强相互作用系统,例如晶格或自旋上的~电子,通常会迅速弛豫到定态(平凡吸引子)。这就提出了一个令人困惑的问题:如何从量子定律中产生非平凡的吸引子。在这里,我们引入了导致量子多体系统中没有经典极限的极端鲁棒和持久振荡的严格局部动力对称性。与对称算子没有重叠的可观测值会松弛,失去对其初始条件的记忆。剩余的可观测量进入复杂的动力学循环,标志着量子多体吸引子的出现。我们提供了一个构造具有局部动力对称性的哈密顿量的方法。作为一个例子,我们介绍了自旋花边-一个准一维量子磁体的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信