Comparing forward and inverse design paradigms: A case study on refractory high-entropy alloys

IF 0.7 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Arindam Debnath, Lavanya Raman, Wenjie Li, Adam M Krajewski, Marcia Ahn, Shuang Lin, S. Shang, A. Beese, Zibai Liu, Wesley F. Reinhart
{"title":"Comparing forward and inverse design paradigms: A case study on refractory high-entropy alloys","authors":"Arindam Debnath, Lavanya Raman, Wenjie Li, Adam M Krajewski, Marcia Ahn, Shuang Lin, S. Shang, A. Beese, Zibai Liu, Wesley F. Reinhart","doi":"10.1557/s43578-023-01122-6","DOIUrl":null,"url":null,"abstract":"The rapid design of advanced materials is a topic of great scientific interest. The conventional “forward” paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an “inverse” design paradigm for advanced materials, wherein a model provided with the target properties is able to find the best candidate. Being a relatively new concept, there remains a need to systematically evaluate how these two paradigms perform in practical applications. Therefore, the objective of this study is to directly, quantitatively compare the forward and inverse design modeling paradigms. We do so by considering two case studies of refractory high-entropy alloy design with different objectives and constraints and comparing the inverse design method to other forward schemes like localized forward search, high-throughput screening, and multi-objective optimization.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"75 1","pages":"4107 - 4117"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01122-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid design of advanced materials is a topic of great scientific interest. The conventional “forward” paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an “inverse” design paradigm for advanced materials, wherein a model provided with the target properties is able to find the best candidate. Being a relatively new concept, there remains a need to systematically evaluate how these two paradigms perform in practical applications. Therefore, the objective of this study is to directly, quantitatively compare the forward and inverse design modeling paradigms. We do so by considering two case studies of refractory high-entropy alloy design with different objectives and constraints and comparing the inverse design method to other forward schemes like localized forward search, high-throughput screening, and multi-objective optimization.
正反设计范式的比较:以难熔高熵合金为例
先进材料的快速设计是一个具有重大科学意义的课题。传统的“向前”材料设计范式包括评估多个候选材料,以确定与目标特性匹配的最佳候选材料。然而,深度学习领域的最新进展已经为先进材料的“逆”设计范式提供了可能性,其中具有目标属性的模型能够找到最佳候选者。作为一个相对较新的概念,仍然需要系统地评估这两种范式在实际应用中的表现。因此,本研究的目的是直接、定量地比较正、逆设计建模范式。通过对两个具有不同目标和约束条件的难降解高熵合金设计案例进行分析,并将逆向设计方法与局部正向搜索、高通量筛选和多目标优化等正向方案进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
119
审稿时长
6.4 months
期刊介绍: The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信