S. Venkatasubramanian, L. Laughlin, K. Haneda, M. Beach
{"title":"Wideband self-interference channel modelling for an on-frequency repeater","authors":"S. Venkatasubramanian, L. Laughlin, K. Haneda, M. Beach","doi":"10.1109/EUCAP.2016.7481356","DOIUrl":null,"url":null,"abstract":"In-band full-duplex relaying has been of recent interest as it can potentially double spectral efficiency and decrease latency, thus improving throughput to the end user. The bottleneck in enabling full-duplex operation is the self-interference (SI) due to the relay's own transmission, which must be mitigated at the antenna, radio frequency and digital domains. In the case of compact back-to-back relays which are proposed for outdoor-to-indoor relaying, the SI comprises direct coupling and multipath components. This paper models the SI channel across 300MHz bandwidth at 2.6GHz in two indoor environments with a back-to-back relay antenna. The power delay profile of the SI channel is modelled as a single decaying exponential function with specular components represented by delta functions. The fading characteristics of each tap are modelled by a normal distribution based on the measurements. The proposed model can be used to generate a tapped-delay model of the SI channel between compact back-to-back antennas for use in link-level simulations and hardware in the loop emulation.","PeriodicalId":6509,"journal":{"name":"2016 10th European Conference on Antennas and Propagation (EuCAP)","volume":"4 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUCAP.2016.7481356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In-band full-duplex relaying has been of recent interest as it can potentially double spectral efficiency and decrease latency, thus improving throughput to the end user. The bottleneck in enabling full-duplex operation is the self-interference (SI) due to the relay's own transmission, which must be mitigated at the antenna, radio frequency and digital domains. In the case of compact back-to-back relays which are proposed for outdoor-to-indoor relaying, the SI comprises direct coupling and multipath components. This paper models the SI channel across 300MHz bandwidth at 2.6GHz in two indoor environments with a back-to-back relay antenna. The power delay profile of the SI channel is modelled as a single decaying exponential function with specular components represented by delta functions. The fading characteristics of each tap are modelled by a normal distribution based on the measurements. The proposed model can be used to generate a tapped-delay model of the SI channel between compact back-to-back antennas for use in link-level simulations and hardware in the loop emulation.