Highly Efficient Photocatalysis by Zinc Oxide-Reduced Graphene Oxide (ZnO-rGO) Composite Synthesized via One-Pot Room-Temperature Chemical Deposition Method

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
Roselle T. Ngaloy, A. Fontanilla, Ma. S. Rebecca Soriano, C. Pascua, Y. Matsushita, I. Agulo
{"title":"Highly Efficient Photocatalysis by Zinc Oxide-Reduced Graphene Oxide (ZnO-rGO) Composite Synthesized via One-Pot Room-Temperature Chemical Deposition Method","authors":"Roselle T. Ngaloy, A. Fontanilla, Ma. S. Rebecca Soriano, C. Pascua, Y. Matsushita, I. Agulo","doi":"10.1155/2019/1895043","DOIUrl":null,"url":null,"abstract":"We synthesized zinc oxide-reduced graphene oxide (ZnO-rGO) composites using a one-pot chemical deposition method at room temperature. Zinc powder and graphene oxide (GO) of different mass ratios (1 : 1, 1 : 2, 1 : 5, 1 : 10, and 1 : 20 GO to Zn) were used as precursors in a mildly alkaline solution. UV-Vis spectroscopy was used to study the photocatalytic efficiency of the samples through the photodegradation of methylene blue (MB). UV-Vis measurements show the fast decomposition of methylene blue under UV light illumination with the best degradation efficiency of 97.7% within one hour, achieved with sample ZG2 (1 GO : 2 Zn mass ratio). The corresponding degradation rate was kZG2 = 0.1253 min−1, which is at least 5.5 times better than other existing works using hydrothermal methods. We argue that the excellent photodegradation of MB by ZG2 is due to the efficient charge separation brought about by the electronic interaction of the rGO with the ZnO and the formation of a Zn-O-C bond, as supported by XRD and Raman spectroscopy measurements.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/1895043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 11

Abstract

We synthesized zinc oxide-reduced graphene oxide (ZnO-rGO) composites using a one-pot chemical deposition method at room temperature. Zinc powder and graphene oxide (GO) of different mass ratios (1 : 1, 1 : 2, 1 : 5, 1 : 10, and 1 : 20 GO to Zn) were used as precursors in a mildly alkaline solution. UV-Vis spectroscopy was used to study the photocatalytic efficiency of the samples through the photodegradation of methylene blue (MB). UV-Vis measurements show the fast decomposition of methylene blue under UV light illumination with the best degradation efficiency of 97.7% within one hour, achieved with sample ZG2 (1 GO : 2 Zn mass ratio). The corresponding degradation rate was kZG2 = 0.1253 min−1, which is at least 5.5 times better than other existing works using hydrothermal methods. We argue that the excellent photodegradation of MB by ZG2 is due to the efficient charge separation brought about by the electronic interaction of the rGO with the ZnO and the formation of a Zn-O-C bond, as supported by XRD and Raman spectroscopy measurements.
一锅室温化学沉积法合成氧化锌-还原氧化石墨烯(ZnO-rGO)复合材料高效光催化
在室温下采用一锅化学沉积法合成了氧化锌还原氧化石墨烯(ZnO-rGO)复合材料。以不同质量比(1:1、1:2、1:5、1:10和1:20)的氧化石墨烯(GO)和锌粉作为前驱体,在轻度碱性溶液中进行研究。利用紫外可见光谱法研究了样品光降解亚甲基蓝(MB)的光催化效率。紫外可见测试表明,在紫外光照射下,亚甲基蓝的降解速度很快,当样品为ZG2 (1 GO: 2 Zn质量比)时,1小时内亚甲基蓝的降解效率最高,为97.7%。相应的降解速率为kZG2 = 0.1253 min−1,比现有的水热法降解效果好5.5倍以上。我们认为ZG2对MB的良好光降解是由于rGO与ZnO的电子相互作用带来了有效的电荷分离,并形成了Zn-O-C键,这得到了XRD和拉曼光谱测量的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信